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Multi-group latent growth modelling in the structural equation modelling framework has

been widely utilized for examining differences in growth trajectories across multiple

manifest groups.Despite its usefulness, the traditionalmaximum likelihood estimation for

multi-group latent growth modelling is not feasible when one of the groups has no

response at any given data collection point, or when all participants within a group have

the same response at one of the time points. In other words, multi-group latent growth

modelling requires a complete covariance structure for each observed group. The

primary purpose of the present study is to show how to circumvent these data problems

by developing a simple but creative approach using an existing estimation procedure for

growth mixture modelling. A Monte Carlo simulation study was carried out to see

whether themodified estimation approach provided tangible results and to see how these

results were comparable to the standard multi-group results. The proposed approach

produced results that were valid and reliable under the mentioned problematic data

conditions. We also present a real data example and demonstrate that the proposed

estimation approach can be used for the chi-square difference test to check various types

of measurement invariance as conducted in a standard multi-group analysis.

1. Introduction

There are many situations where we want to know if a measurement or structural

equation model for one group has the same parameter values as in other groups (Bollen,

1989). This question can be addressed using a multi-group approach in which various

forms of invariance are tested across groups, with or without latent variables, in the

structural equation modelling (SEM) framework (J€oreskog, 1971; S€orbom, 1974). There

has been a great deal of multi-group SEM research on various methodological and
substantive topics (e.g., see Byrne, Shavelson&Muth�en, 1989; Cheung&Rensvold, 2002;
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Cole, Martin & Steiger, 2005; LaGrange et al., 2011; Mun, Fitzgerald, von Eye, Puttler &

Zucker, 2001; Muth�en, 1989; Rivera & Satorra, 2002; Vandenberg & Lance, 2000). In

recent years, multi-group SEM has been extended to latent growth modelling (LGM) to

examine differences in growth trajectories across multiple manifest (observed) groups
(McArdle, 1986; Meredith & Tisak, 1984, 1990). For substantive, as well as methodolog-

ical, examples, see Little, Schnabel and Baumert (2000), McArdle (1989), Muth�en and

Asparouhov (2002), Palardy (2008), andWang, Siegal, Falck, Carlson and Rahman (1999).

Despite the usefulness of amulti-group LGM approach, a couple of data problemsmay

arise especially when one of the known, manifest groups is small. For example, Figure 1

shows a hypothetical situation in which heterogeneity in depression trajectories is

examined using LGM across several race groups, with Native American and Asian groups

having small sample sizes. If any one of these small groups has completely missing
responses at a single time point, due to either study design (no planned follow-up) or

empirical missingness, then the subsequent estimation fails because the traditional

maximum likelihood (ML) estimation for multi-group analysis in the SEM framework

initiates its estimation procedures with complete covariance structures for all groups.

That is, the estimation fails because a covariance structure for one group cannot be fully

specified (i.e., an indicator variable has neither variance nor covariancewithin the group).

Similarly, if all participants within a group have the same response or if only one

participant within a group has a response on an indicator, the traditional estimation
method also fails for the same reason – neither variance nor covariance can be

determined.

These problematic data situations in multi-group analysis are a serious barrier for

anyonewhowants to implement amulti-group growthmodel in the SEM framework. The

simplest option is to exclude the indicator variable that has no variance from the data.

However, such an action has several unattractive implications. First, this approach will

result in not fully utilizing existing data for all other groups. Second, depending on the

model, removing a critical indicator variable may result in less optimal estimation of the
entire model. For example, removing a final follow-up time point could lead to biased

growth factor estimates for all groups. Third, in amore complexmodel, such as piecewise

LGM (Bollen & Curran, 2006; Muth�en & Muth�en, 2010; Raudenbush & Bryk, 2002),

reducing the number of indicator variables may not be a viable option [in terms of

identification] especially when there exists a minimal number of time points within a

single phase orwhen higher-order polynomials, such as quadratic growthmodels, have to

be specified with a few available time points.

Race (Proportion) Repeated measures of depression symptom 

Caucasian (65%): 

African American (20%): 

Asian (10%): 

Native American (5%): EmptyT1 T2 T4 T3

T5T1 T2 Same T3

T5T1 T2 T4 T3

T5T1 T2 T4 T3

Figure 1. A longitudinal, multi-group data example. Depression symptommeasures over five time

points are collected across four race groups. ‘Empty’ represents a completely missing data cell,

indicating all Native American participants provide no response at T5. ‘Same’ represents a same

response data cell, indicating all Asian participants provide the same response at T4.
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This estimation problem can be circumvented, however, using a simple but creative

adjustment approach that takes advantage of an existing estimation procedure for finite

mixture modelling with known classes (Muth�en & Muth�en, 2010). In this adjustment

approach, a mixture estimation procedure is employed with a single latent class that
encompasses multiple manifest groups. Since there is only one latent class with multiple

manifest groups, the model specification is essentially the same as the standard multi-

group analysis that has multiple manifest groups. However, unlike the standard multi-

group SEM estimation procedure that begins with the premise that the covariance

structure for each manifest group must be complete, the mixture estimation approach

does not have that requirement. Mixturemodellingwith known classes inMplus (Muth�en
&Muth�en, 2010) technically treatsmanifest groups as a special case of latent classes in the

sense that the membership of latent classes is known beforehand (i.e., known classes).1

This alternative to multi-group SEM, the mixture approach with known classes, does not

check whether all a priori known classes (i.e., manifest groups) have complete

covariance structures. Theoretically, it is unreasonable to check the individual covariance

structure for each known class prior to estimating model parameters, because the known

classes in amixture model, as opposed tomanifest groups in a standardmulti-group LGM,

are technically ‘latent’ classes. Latent class membership is determined based on posterior

probabilities that are assigned during the estimation process. By regarding the manifest

groups as latent classeswhosemembership is known in thismixture estimation approach,
the procedure checks the covariance structure of entire data as a whole, not group-

specific covariance structures. The differing approaches to data between these two

estimation procedures (the standardmulti-group LGM and the mixture multi-group LGM)

make a critical differencewhen estimating amodel using datawith incomplete covariance

structures for some groups. It is not estimable in the former but estimable in the latter.

Mixture multi-group LGMhas been utilized as an alternative tomulti-group LGMwhen

analysing data with some of these challenging characteristics in recent applied research.

For example, supplemental figures available in the online version of the recent article by
White, Lee,Mun and Loeber (2012)were drawnwith the estimates produced by using this

mixture multi-group LGM approach. While these two approaches are considered as

equivalent by many for practical reasons, a couple of differences exist conceptually and

procedurally. Most important, there is a need to examine these two procedures

methodologically and systematically, and to empirically examine whether the mixture

estimation approach with known classes produces valid estimates under these problem-

atic data conditions.

The present study describes the estimation procedures of these two approaches in
depth, and reports findings from both a simulation study and a real data example. We

conducted a Monte Carlo simulation study to examine whether the mixture multi-group

estimation provides tangible results, as opposed to the standard multi-group estimation,

when a group has no variability on an indicator variable. In addition, we examined how

comparable the known class mixture estimation results are to the standard estimation

results when there are no data problems. To show these, the present study applied the

two estimation procedures to simulated data sets with or without the data problems

across several select conditions. Details of the simulations are provided in Section 5. A real
data example from a smoking cessation clinical trial (Bolt, Piper, Theobald & Baker, 2012;

1 To the best of our knowledge, structural equation modelling programs other than Mplus do not handle this
special kind of categorical variables (i.e., known class variable).
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Piper et al., 2009, 2011) is also provided to show the feasibility of the mixture estimation

with known classes in the presence of one of the specified data problems, and to show

how to test invariance of growth factors using likelihood ratio tests in the context ofmulti-

group LGM analysis.

2. Data problems

A couple of data characteristics for which standard SEM estimation cannot give results for

a multi-group analysis are presented in this section. To begin, consider a simple, typical

type of multi-group data structure in the context of a longitudinal study design. Suppose a
researcher is interested in the efficacy of a depressionmedication for individualswhohave

a history of alcohol dependence. Depression symptom levels after the pharmacological

intervention are collected through hand-held PCs or Palm Pilots daily for 5 days using a

seven-point Likert scale. Let the group variable be race: Caucasian (65%), African

American (20%), Asian (10%), and Native American (5%). These kinds of real-time

ecologicalmomentary assessment (EMA) data tend to have a substantial portion ofmissing

responses (Stone & Shiffman, 1994). Thus, we suppose that the depression symptom

levels are available from400 individualswith 30% of all possible responsesmissing. A brief
illustration is provided in Figure 1.

By fitting a multi-group latent growth model (Bollen & Curran, 2006; McArdle, 1989;

Muth�en&Muth�en, 2010),wewould like to see not only the change in depression after the

intervention but alsowhether there are significant differences in those changes across the

four different race groups. Suppose that a small group has only one response or even no

response at one time point. For example, only one participant in the Native American

group responds at T5, or responses by the Native American group are completely missing

at T5 as shown in Figure 1. In this case, the standard multi-group SEM procedure fails
because a covariance matrix involving T5 data is incomplete for that group, which means

an incomplete covariance structure exists for the Native American group. Another

situation in which every subject in a group has the same response at least for one time

point also results in an estimation problem for the same reason as before, namely no

variance. For example, suppose that all subjects in the Asian group rate their depression

symptom levels as 2 on a seven-point scale at T4 as shown in Figure 1. In this case,

covariances or correlations involving the fourth indicator cannot be calculated for the

Asian group, resulting in an incomplete covariance structure.
As discussed previously, one possible solution to this estimation failure due to the

completely missing data cell or the same response data cell in Figure 1 would be to

eliminate these data at T4 or T5 for all groups from analysis. However, valuable post-

intervention outcome data for the majority of the sample will not be utilized, and any

resulting growth trajectoriesmay not be very trustworthy because the growth trajectories

are based on only three or four time points in this particular hypothetical example. The

validity of a latent growth curve model is directly related to the number of indicator

variables, that is, the number of time points in growthmodels (Kim, 2012). Data from four
time points are normally acceptable for a linear growth model, but they are not enough,

for example, when the sample size is small or when a quadratic slope needs to be

estimated. Moreover, when both the missing data problem and the same response data

problem simultaneously happen at different time points or when there are a limited

number of time points, it may not be feasible to exclude multiple time points in analysis.

For example, with four assessment time points, we cannot eliminate data from twowaves

because it will prevent us from fitting a latent growth curve model.
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These situations are not uncommon, especially for cohort sequential longitudinal data.

A cohort sequential longitudinal design is often recommended as an economical way to

assess a behaviour of interest over a long period of time (Duncan, Duncan &Hops, 1996).

Assuming there is sufficient overlap in assessment time periods across cohorts, we can
draw valid inference about developmental trajectories from multiple cohorts. For

example, White et al. (2012) conducted a multi-group, four piecewise linear growth

curvemodel and examined alcohol use trajectories during the transition fromadolescence

to adulthood for the following five violence groups: non-violent (n = 580; 65%), late-

onsetters (n = 51; 6%), desisters (n = 76; 9%), persisters (n = 103; 12%), and one-time

offenders (n = 84; 9%). The sample was made up of two different cohorts: youngest and

oldest cohorts who were followed up from the first and seventh grade, respectively

(Loeber, Farrington, Stouthamer-Loeber & White, 2008). Thus, this cohort sequential
longitudinal design made it possible to examine alcohol trajectories from ages 12 to 24–
25 years, a much larger developmental window than using data from either cohort alone.

However, this also created a situationwhere datawere sparse at both ends of the age range

and even sparser or completely missing when examined separately for each cohort. More

specifically, the covariance (data) coverage between someof the timepointswas low, and

there were either zero valid observations or only one valid observation (no variance in

either case) for some of the violence groups at a couple of time points. We also provide a

real data example of the same response data problem (Bolt et al., 2012; Piper et al., 2009,
2011) to further examine the mixture multi-group procedure with known classes for the

tricky data problems, in Section 6.

3. Growth mixture model with known classes

Mixture modelling with known classes (Muth�en & Muth�en, 2010) can be used when one
wants to perform a mixture analysis while taking manifest group membership, such as

gender, into consideration. In themixturemodel with known classes, there are two types

of categorical latent variables: one is a latent class variable,whose values are unknown and

estimated by the model; and the other is a known class variable that corresponds to

manifest group membership, such as boys and girls or intervention and control groups.

Therefore, this model is a combination of latent class analysis (i.e., mixture models) and

multi-group analysis. For example, if two latent classes are specified along with four

known classes (i.e., fourmanifest groups), a total of eight (4� 2) class patterns are formed
in the model: from ‘1 and 1’ (first known class and first latent class), ‘1 and 2’ (first known

class and second latent class), and so on up to ‘4 and 2’ (fourth known class and second

latent class).

For the purpose of the present study,mixturemodellingwith known classes is applied

to a latent growth model in this section, resulting in growth mixture modelling with

known classes (Muth�en & Muth�en, 2010). A path diagram is provided in Figure 2 for a

graphical illustration of the model. A thorough model specification is omitted here

because growth mixture modelling (GMM; Muth�en, 2001a,b, 2004; Muth�en & Shedden,
1999) and multiple group analysis (e.g., J€oreskog, 1971; S€orbom, 1974; Vandenberg &

Lance, 2000) are well documented elsewhere, and because the specifications of these

models for the purpose of the estimation are explained in the next section. Notice that the

path diagram is similar to that of GMM, with the difference being the introduction of a

known class variable (manifest group variable in the form of a categorical latent variable).

Both latent class and known class variables are technically categorical latent variables.
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However, while latent classes are really latent, known classes, in fact, correspond to

manifest groups.

The present study utilizes this special extension of GMM that includes one latent class

variable and one a priori known class variable. We identified some critical data problems

in a multi-group longitudinal data analysis mentioned previously and applied one special

case of the GMMwith a known class variable to data to circumvent these problems. This

approach involves specifying one latent class variable with a single category and the other

latent class variable (i.e., known class variable) to indicate multiple manifest groups.2 As a
result, the GMM with one latent class and multiple known classes is equivalent to the

standard multi-group LGM because the known classes of this mixture approach are

fundamentally the manifest groups. The two approaches, the GMM with one latent class

and multiple known classes and the standard multi-group LGM, can be used interchange-

ably when data across all manifest groups have complete covariance structures.

4. Model specification and estimation

In this section, the estimationprocedures for a standardmulti-group SEMand for amixture

multi-group SEMwith knownclasses are compared to show that they have the samemodel

specifications for estimation. Then one important difference in the procedures between

the two methods is discussed. Estimation procedures for a general structural equation

model and amixturemodel have been described elsewhere (Bollen, 1989; J€oreskog, 1973;

y1 y2 y3 y4

latent class

intercept slope

known class

Latent growth model

Growth mixture model

Figure 2. A path diagram of growthmixturemodel with known classes. An LGM in the rectangular

framework extends to a GMMwith the introduction of a latent class variable, which is in the circular

framework. In turn, a GMMextends to aGMMwith known classeswith the introduction of a known

class variable (i.e., manifest group variable).

2 Themixturemodelwith knownclasses can be used for different purposes such as complex survey analysiswith
weights. Neale and Cardon (1992) also used a mixture item response theory model that used a single latent class
with two known classes in the study of monozygotic and dizygotic twins.
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McLachlan & Peel, 2000). However, this section draws attention to the commonality and

difference between the two approaches targeted in this present study: a standard multi-

group SEM and a mixture multi-group SEM estimation procedures.

4.1. A standard multi-group SEM

J€oreskog (1973) discussed ML estimation for general structural equation models. Slightly

different or modified versions also appear in Bollen (1989) and Kaplan (2009). To begin,

let the observed responses x (exogenous variables) and y (endogenous variables) be

denoted as a vector z, and let the observed responses be based on a sample of size n.

Central to the development of the ML estimation is the assumption that observations are

derived from a population that follows a multivariate normal distribution (Kaplan, 2009).
The multivariate normal density function of z can be written as

/ðzi; l;RÞ ¼ 1

ð2pÞðpþqÞ=2jRj1=2
exp �ðzi � lÞ0ðzi � lÞ

2R

� �
; ð1Þ

where l is a mean vector,Σ is a covariance matrix, p is the number of y variables, and q is

the number of x variables. The l andΣ can be further structured by imposing a structural

equation model (Tueller & Lubke, 2010) as follows:

l ¼ mþ K I � Bð Þ�1a; ð2Þ

R ¼ K I � Bð Þ�1W I � Bð Þ�1� �0
K0 þH; ð3Þ

where m is a vector of equation intercepts, Λ is a matrix of factor loadings, I is an identity
matrix, B is a matrix of regression coefficients between factors, a is a vector of factor

means, Ψ is a covariance matrix for the factors, and Θ is a covariance matrix of the

measurement error terms with error variances on the diagonal.

Under the assumption that the observations are independent of one another, the joint

density function (i.e., the likelihood function) for a typical structural equation model can

be derived (Bollen, 1989). Aftermaking some adjustments tomake the calculation easier,3

we need to maximize the log-likelihood function without the constant term, with respect

to the parameters of the model:

log L hð Þ ¼
Xn
i¼1

log/ðzi; l;RÞ ¼ �n

2
log R hð Þj j � 1

2

Xn
i¼1

zi
0 R�1 hð Þzi

¼ �n

2
log R hð Þj j � n

2
tr SR�1 hð Þ� �

;

ð4Þ

where h is a vector of parameters, and S is an unbiased sample covariance matrix

corresponding to z.

3 According to Bollen (1989), sample size n should be n + 1, and S should be S* corresponding to n + 1 in
equation (4). However, the difference between S and S* or the difference between n and n + 1 is negligible in
large samples.
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For the estimationof amulti-group structural equationmodel, the observed covariance

matrix (Sg) of each group g is the object of the analysis. Thehypothesized structure implies

a covariance matrix Σg(hg) for each group. The total log-likelihood for the multi-group

SEM is a weighted sum of the group-specific log-likelihoods by the group sample size:

log LðhÞmultiple group ¼
XG
g¼1

�ng

2
log Rg hg

� ��� ��� ng

2
tr SgR

�1
g hg
� �h in o

; ð5Þ

where G is the total number of groups. When the observed covariance matrices, Sg, are

closer to the model-implied covariance matrices, Σg(hg), for all groups, the multi-group

model fits better.

4.2. A mixture SEM with known classes

The multivariate normal density function of a finite mixture extension of a structural
equation model (Kaplan, 2009; McLachlan & Peel, 2000; Muth�en, 2002; Tueller & Lubke,

2010; Vermunt & Magidson, 2005) is given by

f zð Þ ¼
XK
k¼1

pk/kðzi; lk;RkÞ; ð6Þ

where z is a vector of observed variables, K is the number of latent classes, pk is the class
proportions such that

PK
k¼1 pk ¼ 1, and φk(zi; lk, Σk) are multivariate normal density

functions with class specific mean vectors lk and class-specific covariance matrices Σk.

The lk and Σk can be further structured by imposing a structural equation model, and

those are the same equations as equations (2) and (3)with the latent class subscript k. The
observed log-likelihood function of a mixture SEM model is

log LðhÞ ¼
Xn
i¼1

log f ðziÞ ¼
Xn
i¼1

log
XK
k¼1

pk/kðzi; lk;RkÞ
 !

: ð7Þ

For the estimation of a single-class mixture SEM model, we apply K = 1 to the finite

mixture extension of an SEMmodel in equations (5) and (6). WhenK = 1, the last term of

equation (7) becomes the right-hand side of equation (8),

Xn
i¼1

log
XK
k¼1

pk/kðzi; lk;RkÞ
 !

¼
Xn
i¼1

log/ðzi; l;RÞ; ð8Þ

because the multivariate normal density function in equation (7), φk(zi; lk, Σk) without
the subscript k (i.e., the multivariate normal density with a single latent class), is

equivalent to themultivariate normal density function shown in equation (1), φ(zi; l, Σ).

The right-hand side of equation (8) is equivalent to equation (4), that is, the log-likelihood
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of the SEM is equal to the log-likelihood of the single-class mixture SEM. Therefore, the

standard SEM model is equivalent to the single-class mixture SEM model from the

viewpoint of the log-likelihood equations. Thus, the samemulti-group adjustment as in the

standard SEM in equation (5) can be applied to the single-class mixture SEM.
Consequently, for the purpose of estimation, the model specifications for the standard

multi-group SEM and the single-class mixture SEM with multiple known classes are

basically equivalent. Now the only difference between the two approaches lies in how

each estimation procedure handles multiple groups: a group variable is manifest in the

standard multi-group analysis, whereas it is latent (known class variable) in the mixture

multi-group analysis.

In a multi-group analysis, the mean vector and the covariance matrix for each group

can bemodelled and estimated separatelywithout taking into account the other groups or
the entire sample because the mean vector and covariance matrices are not correlated

across groups (Arminger & Stein, 1997). That is, a multi-group model is nothing but the

sum of group-specific models. In contrast, in the case of mixture analysis, k posterior

probabilities are assigned to each individual. For example, one individual case has a

probability of 0.7 of belonging to the first latent class and, at the same time, a probability of

0.3 of belonging to the second latent class. All individuals within the entire sample are

linked to one another through posterior probabilities within and across the latent classes.

Therefore, a mixture model is not the sum of class-specific models as in a multi-group
model; class-specific models are rather regarded as the derivatives from a complete

mixture model. Thus, when manifest groups are specified as known classes in a mixture

analysis, these known classes are treated as derived subgroups from the entire sample,

even if the posterior probabilities of the individuals belonging to these known classes are

predetermined (either 1 or 0).

In sum, the completeness of covariance structure for each manifest group is required

in the estimation procedure for the standard multi-group analysis, whereas only the

completeness of the whole covariance structure across all known classes is required for
the mixture multi-group analysis. Consequently, the mixture multi-group procedure can

provide results under the problematic data structures for which the standard multi-group

procedure fails to begin the estimation process. Needless to say, if data are missing on an

indicator variable for all groups, even the mixture multi-group procedure cannot give any

results involving that indicator variable.

5. Monte Carlo simulation

We performed a Monte Carlo simulation study to see whether the mixture method with

known classes provides tangible results, and how those results are comparable to the

standard multi-group results under two situations: when data did not have any problems;

and when data had problems (e.g., either missing or the same). The simulations were

carried out under several limited conditions, since the purpose of the present studywas to

demonstrate the general idea of how to utilize two different analytic approaches for a
given data characteristic, rather than to thoroughly evaluate the performance of the

estimation methods under various simulation conditions.

5.1. Design and data analysis

In a Monte Carlo study, a model or models to be studied should be chosen first; the multi-

group latent growth model was examined in this study. For the choice of design (or
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manipulated) factors and Monte Carlo variables, a normative condition of latent growth

models was decided: five indicator variables, linear slope, amissing proportion of 20%, no

covariate, a sample size of 500 and 100 replications. Four groups in the proportions 65%

(NG1 = 325), 20% (NG2 = 100), 10% (NG3 = 50), and 5% (NG4 = 25), were specified for
N = 500. Once data sets at the normative condition were generated across the four

groups, the standardmulti-group procedure and themixturemulti-group procedurewere

applied to the generated data sets to see whether the results from the two estimation

procedures were comparable. Then, all responses on the fifth indicator variable in the

fourth groupof the generateddata setswere (1) totally removed to emulate the completely

missing data condition, and (2) replaced with a single constant4 to emulate the same

response data condition. The mixture multi-group procedure was applied to the

manipulated, problematic data sets, and the results were compared to the results from the
previous step that had no data problems.

Next, each of the design factors was varied while the other factors were held constant

at their normative values. The following four design factors were examined: (1) an added

quadratic growth slope; (2) an added continuous covariate; (3) an increased missing

proportion of 50%; and (4) a decreased sample size of 300. For the generated data setswith

each varying factor, both the standard and themixturemulti-group procedures were used

for estimation to see whether the results were comparable. Then the data manipulation

procedures described above were applied to the generated data sets to simulate the
completely missing data condition as well as the same response data condition in one

group. Only the mixture multi-group procedure was applied to the problematic data sets.

Finally, the effect of the multiple missing data problem and the effect of both missing

and same response data problems were investigated. For the multiple missing data

modification from the generated data sets at the normative values, two cases were

considered: completely missing data in two different groups and completely missing data

at twodifferent timepoints in one group. For themissing and same responsemodification,

two cases were also considered: two different problems in two different groups versus in
one group. The mixture multi-group procedure was applied to the manipulated data sets,

and the results were compared as before. Due to space considerations, only the

parameters related to growth factors (i.e., means and variances of growth factors) are

presented for the simulation results in Tables 1–4.

5.2. Simulation results

Relative parameter recovery at the normative condition was compared between the
results from the two approaches under generated (unproblematic) and manipulated

(problematic) data sets. Averaged point estimates across 100 replications and their

averaged standard errors (in parentheses) for growth factors are provided in Table 1.5 The

results from the mixture multi-group analysis were exactly the same as those from the

standardmulti-group analysis across all estimates. This is not surprising because themodel

specifications for the twomodels are statistically equivalent. Results from the condition of

4 The expected mean of the data cell on the trajectory was used as the same response. That is, we drew an
extended linear line up to the fifth time point based on the growth trajectory with the first four time points, and
used the number on the trajectory at the fifth time point as the same response value.
5 Averaged standard errors were compared to the corresponding standard deviations (or empirical standard
errors), and the overall discrepancy was minimal (i.e., less than 1% on average). The standard deviation of each
parameter estimate over the replications of a simulation study is considered as population standard error when
the number of replications is large (Muth�en & Muth�en, 2002).
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completelymissing data at one time point in one group are shown in the ‘Missing’ column

in Table 1. The point estimates in the ‘Missing’ columnwere the same as the results of the
standardmulti-groupprocedure and also the results of themixturemulti-groupprocedure

with the generated data sets. Standard errors of the simulations, however,were somewhat

changed for group 4; the standard errors of the mean and variance of the intercept were

Table 3. Monte Carlo estimates through mixture estimation when two missing data cells are

present

Mixture estimation

Group

Growth

factor Parameter Generated

Two missing

cells in different

groups

Two missing cells in

one group

1 Intercept 5.0 5.000 (0.074) 5.000 (0.074) 5.000 (0.074)

Linear slope 0.1 0.098 (0.024) 0.098 (0.024) 0.098 (0.024)

2 Intercept 3.0 2.988 (0.131) 2.987 (0.132) 2.988 (0.132)

Linear slope 0.5 0.501 (0.043) 0.501 (0.043) 0.501 (0.043)

3 Intercept 7.0 6.990 (0.188) 6.991 (0.188) 6.990 (0.188)

Linear slope �0.1 �0.098 (0.061) �0.097 (0.066) �0.098 (0.061)

4 Intercept 6.0 5.980 (0.253) 5.986 (0.260) 5.988 (0.263)
Linear slope �0.6 �0.615 (0.083) �0.622 (0.107) �0.620 (0.112)

Note. Themulti-group latent growthmodelwas based on five indicator variables. In the ‘Generated’

column, estimates were from the data sets generated at the normative values. In the ‘Two missing

cells in different groups’ column, all the responses on the fifth time point in group 4 and on the

fourth time point in group 3 were completely missing (values in bold). In the ‘Two missing cells in

one group’ column, all the responses on the third and fifth time points in group 4 were completely

missing (values in bold).

Table 4. Monte Carlo estimates when both a missing data cell and a same response data cell are

present

Mixture estimation

Group

Growth

factor Parameter Generated

Missing and same cells

in different groups

Missing and same

cells in one group

1 Intercept 5.0 5.000 (0.074) 5.000 (0.074) 5.000 (0.074)

Linear slope 0.1 0.098 (0.024) 0.098 (0.024) 0.098 (0.024)

2 Intercept 3.0 2.988 (0.131) 2.988 (0.132) 2.988 (0.132)

Linear slope 0.5 0.501 (0.043) 0.500 (0.043) 0.500 (0.043)

3 Intercept 7.0 6.990 (0.188) 6.991 (0.188) 6.990 (0.188)

Linear slope �0.1 �0.098 (0.061) �0.097 (0.066) �0.098 (0.061)

4 Intercept 6.0 5.980 (0.253) 5.964 (0.283) 5.975 (0.282)
Linear slope �0.6 �0.615 (0.083) �0.600 (0.064) �0.601 (0.065)

Note. Themulti-group latent growthmodelwas based on five indicator variables. In the ‘Generated’

column, estimates were from the data sets generated at the normative values. In the ‘Missing and

same cells in different groups’ column, all the responses on the fifth time point in group 4 were

completely missing and all the responses on the fourth time point in group 3 were the same (values

in bold). In the ‘Missing and same cells in one group’ column, all the responses on the fifth timepoint

were the same and all the responses on the third time point were completely missing in group 4.
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slightly inflated. Results from the same response data condition are shown in the ‘Same’

column in Table 1. Overall, point estimates and standard errors were also similar to the

results of the standard and themixturemulti-group procedures in the ‘Generated’ column

in Table 1. The point estimates and the standard errors of the intercept and linear slope in
group 4 changed a little, though the differences were small in magnitude.

Table 2 provides the Monte Carlo estimates when each design factor varied, while

holding the other factors at their normative values. The patterns of the results were very

similar to those in Table 1 across the following four different conditions: (1) when a

quadratic slope was added; (2) when a continuous covariate was added; (3) when the

missing proportion was increased to 50%; and (4) when the sample size was decreased to

300. First, the results of the mixture multi-group procedure were the same as those of the

standard multi-group procedure with generated data sets. Second, the results were still
very comparable when the missing data and same response data conditions were

manipulated. The results of groups 1, 2, and 3were the same or nearly the same regardless

of the conditions. The results of group 4 that had the missing data or the same response

data conditions had somewhat different growth factor estimates, though the differences

were minimal.

The Monte Carlo estimates for the condition of completely missing data at two time

points in one group or two groups are provided in Table 3. Regardless of whether this

condition was limited to one group or two groups, the mean estimates of intercepts and
slopes, as well as standard errors, were very similar to the results from the generated data

sets without missing data. The standard errors in parentheses were slightly different,

though the differences were very small. The Monte Carlo estimates for the condition of

both the completelymissing data and the same response data are provided in Table 4. The

results were still very comparable to the findings from the generated data sets, whether

the two kinds of data problems occurred in one group or two groups.

6. Real data analysis

In this section, the mixture multi-group approach is applied to a real data set with one of

the identified data problems as an alternative to the standard multi-group approach. We

show a case of the same response problem in this example, having briefly described an

example of the missing data problem in the previous section (White et al., 2012). We

present this analysis example to show the feasibility of themixturemulti-group procedure
under theseproblematic data situations and to show thatwecan calculate a v2 difference test
statistic for invariance tests that are typically implemented in a standardmulti-group analysis

using provided log-likelihood values in the results. It should be noted that the example

provided is for demonstration purposes and thus no serious substantive conclusions should

be construed from the findings. The Mplus code is provided in the Appendix.

The data used in this analysis are from a large placebo-controlled, comparative

effectiveness smoking cessation clinical trial conducted at the University of Wisconsin

Center for Tobacco Research and Intervention (Bolt et al., 2012; Piper et al., 2009, 2011).
This studywas designed to test the efficacy of five cessation pharmacotherapy treatments

(nicotine lozenge, nicotine patch, sustained-release bupropion, nicotine patch plus

nicotine lozenge, and bupropion plus nicotine lozenge) versus placebo (see Piper et al.,

2009, 2011; for more details on study methods and main results). As part of the study

assessment, intensive longitudinal data were collected via EMA. Study participants

completed four daily EMA reports (just after waking, prior to going to bed, and two

additional reports timed to occur randomly during the day) for oneweek prior tomaking a
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quit attempt and for 2 weeks after the quit day. Participants made ratings of nicotine

withdrawal symptoms, self-efficacy, motivation, cessation fatigue, smoking, alcohol use,

stress, and context (situational factors that may increase risk of smoking). The EMA

methodology is described in more detail in Bolt et al. (2012) and Piper et al. (2011).
For a growthmodel, we utilized sevenwaves of daily negative affect (NA) ratings in the

cessation clinical trial, fromquit day to 1 weekpost-quit. Themain outcomemeasure, NA,

was an average score of twofive-point (1 to 5) Likert-type scale items: one itemwas ‘upset’

and the otherwas ‘distressed.’ Therefore, NA ranged from1 to 5, in increments of 0.5. The

group variable of interest was marital status, assessed using six categories: married,

n = 565 (46.3%); divorced, n = 263 (21.5%); widowed, n = 34 (2.8%); separated, n = 29

(2.4%); never married, n = 222 (28.2%); and domestic partner, n = 108 (8.8%).

Descriptive statistics for the indicator variables and frequencies of responses are
presented in Table 5.

The objective of this multi-group analysis was to examine whether or not the six

growth trajectories corresponding to the six groups were comparable to one another.

One problem in this typical multi-group latent growth model was that all subjects in the

separated group had the same response at T7 (i.e., all 1s; see Table 5). Substantively or

conceptually, the fact that all participants had the same response is not a problem.

However,with this sameness in a data set, SEMprograms, includingMplus,will not initiate

the estimation process. For example, Mplus outputs an error message: ‘One or more
variables have a variance of zero. Check your data and format statement.’ Thus, we

implemented the mixture multi-group procedure with one latent class and six known

classes, which then estimated all different growth factor means and variances across the

six marital groups. The results are provided in Table 6(a), and the growth trajectories are

Table 5. Descriptive statistics of negative affect by martial groups

Marital status

Time

T1 T2 T3 T4 T5 T6 T7

Married M 1.313 1.320 1.321 1.254 1.327 1.276 1.264

SD 0.620 0.675 0.686 0.554 0.700 0.622 0.615

n 534 493 479 475 451 449 453

Divorced M 1.406 1.464 1.424 1.429 1.367 1.448 1.403

SD 0.638 0.766 0.731 0.868 0.721 0.790 0.752

n 245 235 230 219 210 201 206

Widowed M 1.288 1.300 1.350 1.161 1.148 1.250 1.286

SD 0.468 0.726 0.559 0.351 0.477 0.553 0.615

n 33 30 30 31 27 28 28

Separated M 1.173 1.273 1.250 1.068 1.023 1.048 1.000
SD 0.468 0.650 0.511 0.234 0.107 0.218 0.000
n 26 22 24 22 22 21 19

Never married M 1.552 1.500 1.398 1.377 1.387 1.389 1.457

SD 0.864 0.780 0.687 0.749 0.738 0.675 0.771

n 212 185 182 175 173 166 163

Not married,

but living with

domestic partner

M 1.500 1.355 1.340 1.272 1.356 1.283 1.328

SD 0.883 0.719 0.657 0.572 0.654 0.566 0.655

n 103 100 97 101 94 90 87

Note. M = mean; SD = standard deviation. Married, n = 565; divorced, n = 263; widowed,

n = 34; separated, n = 29; never married, n = 222; domestic partner, n = 108. The subjects in

the separated group on T7 (n = 19; bold values) gave all the same responses, which were 1s.
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shown in Figure 3(a). One of the important purposes of estimating a typical multi-group

latent growth model is to test whether some of the growth factors are invariant across

groups. Thus, we also ran the same multi-group model with the constraint of the same

slope means across the six groups using the mixture procedure.6 The results of the

restricted model are presented in Table 6(b), and the growth trajectories are shown in

Figure 3(b).

Table 6. Results of mixture multi-group analysis with seven waves of negative affect real-time data

Marital status Frequency Proportion Intercept Slope Parameters Log-likelihood

(a) Without any constraint

Married 565 46.3% 1.323 �0.008 27 �8111.019

Divorced 263 21.5% 1.446 �0.004

Widowed 34 2.8% 1.277 �0.004

Separated 29 2.4% 1.284 –0.032*
Never married 222 18.2% 1.513 �0.017*

Domestic partner 108 8.8% 1.451 �0.026*

(b) With a constraint of the same slope estimates

Married 565 46.3% 1.331 �0.011* 22 �8113.509

Divorced 263 21.5% 1.466 �0.011*

Widowed 34 2.8% 1.296 �0.011*

Separated 29 2.4% 1.224 �0.011*
Never married 222 18.2% 1.494 �0.011*

Domestic partner 108 8.8% 1.404 �0.011*

Note. *p < .05. The subjects in the separated group had the same responses at T7 and are thus

indicated in bold.
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Figure 3. Growth trajectories of negative affect across the six marital groups without and with

constraint.

6 In a substantive study, a constraint can be applied to some but not all groups, depending on the hypothesis
tested.
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A likelihood ratio test was then performed to test the invariance of the slopes (H0 : The

six marital groups have the same slopes, vs. H1 : At least one slope is different from the

others). Since ML estimation with robust standard errors (Muth�en & Muth�en, 2010) was

used in Mplus 6, scaling correction factors were adjusted to calculate the v2 difference
statistic (see Satorra, 2000; Satorra & Bentler, 2001). Given the simpler model’s log-

likelihood (lls), scaling correction factor (scfs), and number of parameters (ps), and given

themore complexmodel’s log-likelihood (llc), scaling correction factor (scfc), andnumber

of parameters (pc), the v
2difference statistic is calculated as

v2diff ¼
�2ðlls � llcÞ

ps � scfs � pc � scfcð Þ= ps � pcð Þ ; ð9Þ

which follows the v2 distribution with pc � ps degrees of freedom. In our particular
example,

v2diff ¼
�2ð�8113:509þ 8111:019Þ

22� 2:590� 27� 2:267ð Þ= 22� 27ð Þ ¼ 5:8879; ð10Þ

and this statistic was compared to the v2distribution with 5 degrees of freedom (i.e., 27–

22=5). Thep-valuewas .3173, suggesting that growth slopeswerenot different across the

six groups. Likewise, when the standard multi-group procedure was not feasible because
of problematic data situations, the mixture multi-group procedure provided not only the

trajectory estimates across the groups but also the v2 difference statistic for invariance

tests, just like a standard multi-group analysis without any problematic data conditions.

7. Discussion and conclusion

The purpose of the present study was to show how to circumvent an estimation problem

for a multi-group latent growth model when an indicator variable or variables had no

variance in any of the groups examined. Since amulti-group analysis in the SEM framework

initiates its estimation process with a check of complete covariance structures for all

groups, the parameters for a multi-group model are not estimable when a group has

completely missing data (or just one response) or same response data on an indicator

variable or variables. This situation can be quite common in cohort sequential longitudinal

studies (or accelerated longitudinal studies) or in a complex longitudinal model with
multiple distinct phases, because data are likely to be sparser as the time moves farther

from a baseline or an intervention point. If a target group of interest is small in size, these

data problems can occur more often than in other groups with a larger number of

observations becauseparticipants in a small, homogeneous group aremore likely to have a

similar experience at a given time point. The mixture multi-group approach provided

tangible results with problematic data sets by applying a creative, straightforward

adjustment to an existing mixture modelling approach.

Theoretically and empirically, the mixture multi-group procedure can provide valid
and reliable results when used as an alternative to the standard multi-group procedure in

problematic data situations.However,without aMonteCarlo simulation study, it is hard to

know how closely those estimates from the mixture approach match the results from the
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standard multi-group LGM. When there was no data problem, the mixture multi-group

estimation procedure showed exactly the same results, in terms ofmeans and variances of

growth factors, as the standard multi-group estimation procedure. When the generated

data sets were manipulated to simulate problematic data examples, the mixture multi-
group approach provided quite reliable results. Although the Monte Carlo study showed

very reassuring results of themixture estimation procedure, one should also note that this

was a simulation study and the scope and thoroughness of the conditions simulated were

limited.

Having verified that the mixture multi-group procedure showed valid and reliable

results in the Monte Carlo study, we checked whether this mixture approach could be

used as an alternative to the standardmulti-group approach in a real data analysis. In other

words, we demonstrated that the mixture approach could be used for the v2 difference
test to check various types of measurement invariance as conducted in a standard multi-

group analysis. Through the results of the real data example, utilizing negative affect data

collected over 1 week post-quit in a real smoking cessation clinical trial, we demonstrated

that the log-likelihood values from the two models, one of which was the more restricted

model (i.e., the model with the same slopes), could be used to test the slope invariance

across the six marital groups.

The mixture estimation procedure appears to be useful in the presence of the data

problems described. Of the two data problems, however, one needs to differentiate the
completely missing data problem from the same response data problem. The fact that a

group has the same response on an indicator variable by chance is not a substantive or

design problem but an estimation problem. By comparison, completely missing data can

be a substantive problem because actual responses for an indicator variable in a group

have never been observed. If this missingness occurred by a research design as in cohort

sequential longitudinal studies, it is reasonable to assume that the missing at random

assumption is satisfied (Graham, Hofer & MacKinnon, 1996). Thus, in this mixture multi-

group analysis, it is assumed that the potential responses in a completely missing data cell
could lie on an extension of the growth trajectory based on the other valid indicators. If

data are missing not at random (e.g., non-ignorable dropouts of patients from a treatment

programme), then, needless to say, the mixture multi-group approach will not provide

valid results over unobserved data points. Although, in the simulation study, the results

showed quite good growth parameter recoverywith completely missing data, one should

carefully check the growth estimates with the completely missing data problem for

interpretation.

In linewith this cautionary note, researchers should proceedwith cautionwhen using
the mixture estimation approach for a factor-analytic model. A latent growth model is

fundamentally a factor-analytic model, and therefore this mixture approach can also be

used for a factor model under the same kinds of data problems. However, in a latent

growth model, one characteristic (e.g., depression) is measured on multiple occasions

across time, whereas in a factor-analytic model, multiple characteristics (e.g., depression,

craving, and negative affect) are measured only once. It may or may not be relevant to

assume that the potential responses of completely missing depression scores are

comparable realizations of the other indicators (e.g., craving and negative affect),7 and
that this missing pattern ismissing at random. Thus, one should be careful when using the

7This assumption probably depends on how strongly these indicator variables are correlated with each other. If
they are highly correlated, the assumption may be acceptable.
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mixture multi-group approach with the completely missing data problem, especially in a

common factor model.

The present study introduced and demonstrated a modified estimation procedure to

circumvent some problematic data situations which hinder estimation in a multi-group
longitudinal data analysis. More specifically, the mixture multi-group procedure was

shown to reliably estimate a multi-group latent growth model with completely missing

data or the same response data on an indicator variable(s). Furthermore, the validity of

invariance tests using likelihood ratios from the mixture analysis output was demon-

strated. In the current research environment where limited resources are maximized to

produce valid inference using efficient study designs – for example, accelerated

longitudinal or cohort sequential longitudinal designs (Duncan et al., 1996) or planned

missing follow-ups (Brown, Indurkhya & Kellam, 2000) – the mixture approach
maximizes the use of the existing data to answer often critical questions in the literature.

Thus, this modified mixture approach to a multi-group analysis can have important

implications for applied research.
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Appendix 1: Mplus code for real data example

Herewe give theMplus code for a growthmixturemodel with known classes – a smoking
cessation data example with six known classes and one true latent class (no slope

constraint across six marital groups).

Title: A mixture model with known classes-no slope constraint
Data: File is TTURC2_EDData.dat;

Format is 14f8.2;
Variable: Names are id y1-y7 gender marital educatio

wages income race;
Usevar are y1-y7 marital;
Classes = cg(6) c(1);
Knownclass is cg (marital=1 marital=2 marital=3

marital=4 marital=5 marital=6);
Missing are all(999);

Analysis: Model = nomeanstructure;
Type = mixture; estimator = mlr;

Model: %Overall%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#1.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#2.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#3.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#4.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#5.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
%cg#6.c#1%
i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

Plot: Type = plot2;
Series = y1(0) y2(1) y3(2) y4(3) y5(4) y6(5) y7(6);

Output: Tech9;
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