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Multi-group latent growth modelling in the structural equation modelling framework has
been widely utilized for examining differences in growth trajectories across multiple
manifest groups. Despite its usefulness, the traditional maximum likelihood estimation for
multi-group latent growth modelling is not feasible when one of the groups has no
response at any given data collection point, or when all participants within a group have
the same response at one of the time points. In other words, multi-group latent growth
modelling requires a complete covariance structure for each observed group. The
primary purpose of the present study is to show how to circumvent these data problems
by developing a simple but creative approach using an existing estimation procedure for
growth mixture modelling. A Monte Carlo simulation study was carried out to see
whether the modified estimation approach provided tangible results and to see how these
results were comparable to the standard multi-group results. The proposed approach
produced results that were valid and reliable under the mentioned problematic data
conditions. We also present a real data example and demonstrate that the proposed
estimation approach can be used for the chi-square difference test to check various types
of measurement invariance as conducted in a standard multi-group analysis.

I. Introduction

There are many situations where we want to know if a measurement or structural
equation model for one group has the same parameter values as in other groups (Bollen,
1989). This question can be addressed using a multi-group approach in which various
forms of invariance are tested across groups, with or without latent variables, in the
structural equation modelling (SEM) framework (Joreskog, 1971; Sorbom, 1974). There
has been a great deal of multi-group SEM research on various methodological and
substantive topics (e.g., see Byrne, Shavelson & Muthén, 1989; Cheung & Rensvold, 2002;
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Cole, Martin & Steiger, 2005; LaGrange et al., 2011; Mun, Fitzgerald, von Eye, Puttler &
Zucker, 2001; Muthén, 1989; Rivera & Satorra, 2002; Vandenberg & Lance, 2000). In
recent years, multi-group SEM has been extended to latent growth modelling (LGM) to
examine differences in growth trajectories across multiple manifest (observed) groups
(McArdle, 1986; Meredith & Tisak, 1984, 1990). For substantive, as well as methodolog-
ical, examples, see Little, Schnabel and Baumert (2000), McArdle (1989), Muthén and
Asparouhov (2002), Palardy (2008), and Wang, Siegal, Falck, Carlson and Rahman (1999).

Despite the usefulness of a multi-group LGM approach, a couple of data problems may
arise especially when one of the known, manifest groups is small. For example, Figure 1
shows a hypothetical situation in which heterogeneity in depression trajectories is
examined using LGM across several race groups, with Native American and Asian groups
having small sample sizes. If any one of these small groups has completely missing
responses at a single time point, due to either study design (no planned follow-up) or
empirical missingness, then the subsequent estimation fails because the traditional
maximum likelihood (ML) estimation for multi-group analysis in the SEM framework
initiates its estimation procedures with complete covariance structures for all groups.
That is, the estimation fails because a covariance structure for one group cannot be fully
specified (i.e., an indicator variable has neither variance nor covariance within the group).
Similarly, if all participants within a group have the same response or if only one
participant within a group has a response on an indicator, the traditional estimation
method also fails for the same reason — neither variance nor covariance can be
determined.

These problematic data situations in multi-group analysis are a serious barrier for
anyone who wants to implement a multi-group growth model in the SEM framework. The
simplest option is to exclude the indicator variable that has no variance from the data.
However, such an action has several unattractive implications. First, this approach will
result in not fully utilizing existing data for all other groups. Second, depending on the
model, removing a critical indicator variable may result in less optimal estimation of the
entire model. For example, removing a final follow-up time point could lead to biased
growth factor estimates for all groups. Third, in a more complex model, such as piecewise
LGM (Bollen & Curran, 2006; Muthén & Muthén, 2010; Raudenbush & Bryk, 2002),
reducing the number of indicator variables may not be a viable option [in terms of
identification] especially when there exists a minimal number of time points within a
single phase or when higher-order polynomials, such as quadratic growth models, have to
be specified with a few available time points.

Race (Proportion) Repeated measures of depression symptom

Caucasian (65%): | T1 |—| T2 |—| T3 H T4 |—| TS |
African American 20%): | TI o T2 | T3 | T4 | 15 |
| |
| |

Asian (10%): Tl |—| T2 |—| T3 H Same |—| T5
Tl |—| T2 |—| T3 H T4 |—| Empty

Figure 1. A longitudinal, multi-group data example. Depression symptom measures over five time
points are collected across four race groups. ‘Empty’ represents a completely missing data cell,
indicating all Native American participants provide no response at T5. ‘Same’ represents a same

Native American (5%):

response data cell, indicating all Asian participants provide the same response at T4.
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This estimation problem can be circumvented, however, using a simple but creative
adjustment approach that takes advantage of an existing estimation procedure for finite
mixture modelling with known classes (Muthén & Muthén, 2010). In this adjustment
approach, a mixture estimation procedure is employed with a single latent class that
encompasses multiple manifest groups. Since there is only one latent class with multiple
manifest groups, the model specification is essentially the same as the standard multi-
group analysis that has multiple manifest groups. However, unlike the standard multi-
group SEM estimation procedure that begins with the premise that the covariance
structure for each manifest group must be complete, the mixture estimation approach
does not have that requirement. Mixture modelling with known classes in Mplus (Muthén
& Muthén, 2010) technically treats manifest groups as a special case of latent classes in the
sense that the membership of latent classes is known beforehand (i.e., known classes).’
This alternative to multi-group SEM, the mixture approach with known classes, does not
check whether all a priori known classes (i.e., manifest groups) have complete
covariance structures. Theoretically, it is unreasonable to check the individual covariance
structure for each known class prior to estimating model parameters, because the known
classes in a mixture model, as opposed to manifest groups in a standard multi-group LGM,
are technically ‘latent’ classes. Latent class membership is determined based on posterior
probabilities that are assigned during the estimation process. By regarding the manifest
groups as latent classes whose membership is known in this mixture estimation approach,
the procedure checks the covariance structure of entire data as a whole, not group-
specific covariance structures. The differing approaches to data between these two
estimation procedures (the standard multi-group LGM and the mixture multi-group LGM)
make a critical difference when estimating a model using data with incomplete covariance
structures for some groups. It is not estimable in the former but estimable in the latter.

Mixture multi-group LGM has been utilized as an alternative to multi-group LGM when
analysing data with some of these challenging characteristics in recent applied research.
For example, supplemental figures available in the online version of the recent article by
White, Lee, Mun and Loeber (2012) were drawn with the estimates produced by using this
mixture multi-group LGM approach. While these two approaches are considered as
equivalent by many for practical reasons, a couple of differences exist conceptually and
procedurally. Most important, there is a need to examine these two procedures
methodologically and systematically, and to empirically examine whether the mixture
estimation approach with known classes produces valid estimates under these problem-
atic data conditions.

The present study describes the estimation procedures of these two approaches in
depth, and reports findings from both a simulation study and a real data example. We
conducted a Monte Carlo simulation study to examine whether the mixture multi-group
estimation provides tangible results, as opposed to the standard multi-group estimation,
when a group has no variability on an indicator variable. In addition, we examined how
comparable the known class mixture estimation results are to the standard estimation
results when there are no data problems. To show these, the present study applied the
two estimation procedures to simulated data sets with or without the data problems
across several select conditions. Details of the simulations are provided in Section 5. A real
data example from a smoking cessation clinical trial (Bolt, Piper, Theobald & Baker, 2012;

"To the best of our knowledge, structural equation modelling programs other than Mplus do not handle this
special kind of categorical variables (i.e., known class variable).
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Piper et al., 2009, 2011) is also provided to show the feasibility of the mixture estimation
with known classes in the presence of one of the specified data problems, and to show
how to test invariance of growth factors using likelihood ratio tests in the context of multi-
group LGM analysis.

2. Data problems

A couple of data characteristics for which standard SEM estimation cannot give results for
a multi-group analysis are presented in this section. To begin, consider a simple, typical
type of multi-group data structure in the context of a longitudinal study design. Suppose a
researcher is interested in the efficacy of a depression medication for individuals who have
a history of alcohol dependence. Depression symptom levels after the pharmacological
intervention are collected through hand-held PCs or Palm Pilots daily for 5 days using a
seven-point Likert scale. Let the group variable be race: Caucasian (65%), African
American (20%), Asian (10%), and Native American (5%). These kinds of real-time
ecological momentary assessment (EMA) data tend to have a substantial portion of missing
responses (Stone & Shiffman, 1994). Thus, we suppose that the depression symptom
levels are available from 400 individuals with 30% of all possible responses missing. A brief
illustration is provided in Figure 1.

By fitting a multi-group latent growth model (Bollen & Curran, 2006; McArdle, 1989;
Muthén & Muthén, 2010), we would like to see not only the change in depression after the
intervention but also whether there are significant differences in those changes across the
four different race groups. Suppose that a small group has only one response or even no
response at one time point. For example, only one participant in the Native American
group responds at TS5, or responses by the Native American group are completely missing
at TS5 as shown in Figure 1. In this case, the standard multi-group SEM procedure fails
because a covariance matrix involving T'5 data is incomplete for that group, which means
an incomplete covariance structure exists for the Native American group. Another
situation in which every subject in a group has the same response at least for one time
point also results in an estimation problem for the same reason as before, namely no
variance. For example, suppose that all subjects in the Asian group rate their depression
symptom levels as 2 on a seven-point scale at T4 as shown in Figure 1. In this case,
covariances or correlations involving the fourth indicator cannot be calculated for the
Asian group, resulting in an incomplete covariance structure.

As discussed previously, one possible solution to this estimation failure due to the
completely missing data cell or the same response data cell in Figure 1 would be to
eliminate these data at T4 or T5 for all groups from analysis. However, valuable post-
intervention outcome data for the majority of the sample will not be utilized, and any
resulting growth trajectories may not be very trustworthy because the growth trajectories
are based on only three or four time points in this particular hypothetical example. The
validity of a latent growth curve model is directly related to the number of indicator
variables, that is, the number of time points in growth models (Kim, 2012). Data from four
time points are normally acceptable for a linear growth model, but they are not enough,
for example, when the sample size is small or when a quadratic slope needs to be
estimated. Moreover, when both the missing data problem and the same response data
problem simultaneously happen at different time points or when there are a limited
number of time points, it may not be feasible to exclude multiple time points in analysis.
For example, with four assessment time points, we cannot eliminate data from two waves
because it will prevent us from fitting a latent growth curve model.
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These situations are not uncommon, especially for cohort sequential longitudinal data.
A cohort sequential longitudinal design is often recommended as an economical way to
assess a behaviour of interest over a long period of time (Duncan, Duncan & Hops, 1996).
Assuming there is sufficient overlap in assessment time periods across cohorts, we can
draw valid inference about developmental trajectories from multiple cohorts. For
example, White et al. (2012) conducted a multi-group, four piecewise linear growth
curve model and examined alcohol use trajectories during the transition from adolescence
to adulthood for the following five violence groups: non-violent (n = 580; 65%), late-
onsetters (n = 51; 6%), desisters (n = 76; 9%), persisters (n = 103; 12%), and one-time
offenders (n = 84; 9%). The sample was made up of two different cohorts: youngest and
oldest cohorts who were followed up from the first and seventh grade, respectively
(Loeber, Farrington, Stouthamer-Loeber & White, 2008). Thus, this cohort sequential
longitudinal design made it possible to examine alcohol trajectories from ages 12 to 24—
25 years, a much larger developmental window than using data from either cohort alone.
However, this also created a situation where data were sparse at both ends of the age range
and even sparser or completely missing when examined separately for each cohort. More
specifically, the covariance (data) coverage between some of the time points was low, and
there were either zero valid observations or only one valid observation (no variance in
either case) for some of the violence groups at a couple of time points. We also provide a
real data example of the same response data problem (Bolt et al., 2012; Piper et al., 2009,
2011) to further examine the mixture multi-group procedure with known classes for the
tricky data problems, in Section 6.

3. Growth mixture model with known classes

Mixture modelling with known classes (Muthén & Muthén, 2010) can be used when one
wants to perform a mixture analysis while taking manifest group membership, such as
gender, into consideration. In the mixture model with known classes, there are two types
of categorical latent variables: one is a latent class variable, whose values are unknown and
estimated by the model; and the other is a known class variable that corresponds to
manifest group membership, such as boys and girls or intervention and control groups.
Therefore, this model is a combination of latent class analysis (i.e., mixture models) and
multi-group analysis. For example, if two latent classes are specified along with four
known classes (i.e., four manifest groups), a total of eight (4 x 2) class patterns are formed
in the model: from ‘1 and 1’ (first known class and first latent class), ‘1 and 2’ (first known
class and second latent class), and so on up to ‘4 and 2’ (fourth known class and second
latent class).

For the purpose of the present study, mixture modelling with known classes is applied
to a latent growth model in this section, resulting in growth mixture modelling with
known classes (Muthén & Muthén, 2010). A path diagram is provided in Figure 2 for a
graphical illustration of the model. A thorough model specification is omitted here
because growth mixture modelling (GMM; Muthén, 2001a,b, 2004; Muthén & Shedden,
1999) and multiple group analysis (e.g., Joreskog, 1971; Sorbom, 1974; Vandenberg &
Lance, 2000) are well documented elsewhere, and because the specifications of these
models for the purpose of the estimation are explained in the next section. Notice that the
path diagram is similar to that of GMM, with the difference being the introduction of a
known class variable (manifest group variable in the form of a categorical latent variable).
Both latent class and known class variables are technically categorical latent variables.
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Figure 2. A path diagram of growth mixture model with known classes. An LGM in the rectangular
framework extends to a GMM with the introduction of a latent class variable, which is in the circular
framework. In turn, a GMM extends to a GMM with known classes with the introduction of a known

class variable (i.e., manifest group variable).

However, while latent classes are really latent, known classes, in fact, correspond to
manifest groups.

The present study utilizes this special extension of GMM that includes one latent class
variable and one a priori known class variable. We identified some critical data problems
in a multi-group longitudinal data analysis mentioned previously and applied one special
case of the GMM with a known class variable to data to circumvent these problems. This
approach involves specifying one latent class variable with a single category and the other
latent class variable (i.e., known class variable) to indicate multiple manifest groups.2 Asa
result, the GMM with one latent class and multiple known classes is equivalent to the
standard multi-group LGM because the known classes of this mixture approach are
fundamentally the manifest groups. The two approaches, the GMM with one latent class
and multiple known classes and the standard multi-group LGM, can be used interchange-
ably when data across all manifest groups have complete covariance structures.

4. Model specification and estimation

In this section, the estimation procedures for a standard multi-group SEM and for a mixture
multi-group SEM with known classes are compared to show that they have the same model
specifications for estimation. Then one important difference in the procedures between
the two methods is discussed. Estimation procedures for a general structural equation
model and a mixture model have been described elsewhere (Bollen, 1989; Joreskog, 1973;

2 The mixture model with known classes can be used for different purposes such as complex survey analysis with
weights. Neale and Cardon (1992) also used a mixture item response theory model that used a single latent class
with two known classes in the study of monozygotic and dizygotic twins.
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McLachlan & Peel, 2000). However, this section draws attention to the commonality and
difference between the two approaches targeted in this present study: a standard multi-
group SEM and a mixture multi-group SEM estimation procedures.

4.1. A standard multi-group SEM

Joreskog (1973) discussed ML estimation for general structural equation models. Slightly
different or modified versions also appear in Bollen (1989) and Kaplan (2009). To begin,
let the observed responses x (exogenous variables) and y (endogenous variables) be
denoted as a vector z, and let the observed responses be based on a sample of size n.
Central to the development of the ML estimation is the assumption that observations are
derived from a population that follows a multivariate normal distribution (Kaplan, 2009).
The multivariate normal density function of z can be written as

. _ 1 (zi — N)I(Zi )
d(zispn, Z) _Wexp S (1)

where 1 is a mean vector, Y is a covariance matrix, p is the number of y variables, and g is
the number of x variables. The p and X can be further structured by imposing a structural
equation model (Tueller & Lubke, 2010) as follows:

p=v+AI—B) (2)

S=AI-B)'"Y[I-B) "N +0, (3)

where v is a vector of equation intercepts, A is a matrix of factor loadings, I is an identity
matrix, B is a matrix of regression coefficients between factors, o is a vector of factor
means, ¥ is a covariance matrix for the factors, and © is a covariance matrix of the
measurement error terms with error variances on the diagonal.

Under the assumption that the observations are independent of one another, the joint
density function (i.e., the likelihood function) for a typical structural equation model can
be derived (Bollen, 1989). After making some adjustments to make the calculation easier,’
we need to maximize the log-likelihood function without the constant term, with respect
to the parameters of the model:

log L(0) = " log d(zi:11, %) = — Slogl=(0)] — 5> =/ =7 (0)z, "
i=1 i=1
= —Zlog|£(6)| — S r[sT(0)],

where 0 is a vector of parameters, and § is an unbiased sample covariance matrix
corresponding to z.

% According to Bollen (1989), sample size n should be 7 + 1, and § should be $* corresponding to 7 + 1 in
equation (4). However, the difference between § and §* or the difference between 7 and 7 + 1 is negligible in
large samples.
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For the estimation of a multi-group structural equation model, the observed covariance
matrix (S,) of each group g is the object of the analysis. The hypothesized structure implies
a covariance matrix Y,(0,) for each group. The total log-likelihood for the multi-group
SEM is a weighted sum of the group-specific log-likelihoods by the group sample size:

G

n n
logl‘(0>multiple group = E : {_ ?glog|2g (Og>’ - 7gtr [nggl (03):| }’ (5>
g=1

where G is the total number of groups. When the observed covariance matrices, S,, are
closer to the model-implied covariance matrices, Eg(eg , for all groups, the multi-group
model fits better.

4.2. A mixture SEM with known classes

The multivariate normal density function of a finite mixture extension of a structural
equation model (Kaplan, 2009; McLachlan & Peel, 2000; Muthén, 2002; Tueller & Lubke,
2010; Vermunt & Magidson, 2005) is given by

f(z) = Z TePre (215 s Zie) (6)

where z is a vector of observed variables, K is the number of latent classes, 7, is the class
proportions such that Zle 7 = 1, and ¢p(zs; Up, Xp) are multivariate normal density
functions with class specific mean vectors y, and class-specific covariance matrices 2.
The u; and 3, can be further structured by imposing a structural equation model, and
those are the same equations as equations (2) and (3) with the latent class subscript 2. The
observed log-likelihood function of a mixture SEM model is

log £(0) = > o/ (z) = 3 log (Z AT zk>). )

For the estimation of a single-class mixture SEM model, we apply K = 1 to the finite
mixture extension of an SEM model in equations (5) and (6). When K = 1, the last term of
equation (7) becomes the right-hand side of equation (8),

n K n
> log (Z ﬁk¢k(zz‘;#k7zk)> = log p(zi; 1, %), (8)
Py =1 =1

because the multivariate normal density function in equation (7), ¢.(z; Ue, 2) Without
the subscript &2 (i.e., the multivariate normal density with a single latent class), is
equivalent to the multivariate normal density function shown in equation (1), ¢(z;; u, 2.
The right-hand side of equation (8) is equivalent to equation (4), that is, the log-likelihood
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of the SEM is equal to the log-likelihood of the single-class mixture SEM. Therefore, the
standard SEM model is equivalent to the single-class mixture SEM model from the
viewpoint of the log-likelihood equations. Thus, the same multi-group adjustment as in the
standard SEM in equation (5) can be applied to the single-class mixture SEM.
Consequently, for the purpose of estimation, the model specifications for the standard
multi-group SEM and the single-class mixture SEM with multiple known classes are
basically equivalent. Now the only difference between the two approaches lies in how
each estimation procedure handles multiple groups: a group variable is manifest in the
standard multi-group analysis, whereas it is latent (known class variable) in the mixture
multi-group analysis.

In a multi-group analysis, the mean vector and the covariance matrix for each group
can be modelled and estimated separately without taking into account the other groups or
the entire sample because the mean vector and covariance matrices are not correlated
across groups (Arminger & Stein, 1997). That is, a multi-group model is nothing but the
sum of group-specific models. In contrast, in the case of mixture analysis, & posterior
probabilities are assigned to each individual. For example, one individual case has a
probability of 0.7 of belonging to the first latent class and, at the same time, a probability of
0.3 of belonging to the second latent class. All individuals within the entire sample are
linked to one another through posterior probabilities within and across the latent classes.
Therefore, a mixture model is not the sum of class-specific models as in a multi-group
model; class-specific models are rather regarded as the derivatives from a complete
mixture model. Thus, when manifest groups are specified as known classes in a mixture
analysis, these known classes are treated as derived subgroups from the entire sample,
even if the posterior probabilities of the individuals belonging to these known classes are
predetermined (either 1 or 0).

In sum, the completeness of covariance structure for each manifest group is required
in the estimation procedure for the standard multi-group analysis, whereas only the
completeness of the whole covariance structure across all known classes is required for
the mixture multi-group analysis. Consequently, the mixture multi-group procedure can
provide results under the problematic data structures for which the standard multi-group
procedure fails to begin the estimation process. Needless to say, if data are missing on an
indicator variable for all groups, even the mixture multi-group procedure cannot give any
results involving that indicator variable.

5. Monte Carlo simulation

We performed a Monte Carlo simulation study to see whether the mixture method with
known classes provides tangible results, and how those results are comparable to the
standard multi-group results under two situations: when data did not have any problems;
and when data had problems (e.g., either missing or the same). The simulations were
carried out under several limited conditions, since the purpose of the present study was to
demonstrate the general idea of how to utilize two different analytic approaches for a
given data characteristic, rather than to thoroughly evaluate the performance of the
estimation methods under various simulation conditions.

5.1. Design and data analysis
In a Monte Carlo study, a model or models to be studied should be chosen first; the multi-
group latent growth model was examined in this study. For the choice of design (or
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manipulated) factors and Monte Carlo variables, a normative condition of latent growth
models was decided: five indicator variables, linear slope, a missing proportion of 20%, no
covariate, a sample size of 500 and 100 replications. Four groups in the proportions 65%
(N1 = 325), 20% (Ng» = 100), 10% (N3 = 50), and 5% (Ng4 = 25), were specified for
N = 500. Once data sets at the normative condition were generated across the four
groups, the standard multi-group procedure and the mixture multi-group procedure were
applied to the generated data sets to see whether the results from the two estimation
procedures were comparable. Then, all responses on the fifth indicator variable in the
fourth group of the generated data sets were (1) totally removed to emulate the completely
missing data condition, and (2) replaced with a single constant” to emulate the same
response data condition. The mixture multi-group procedure was applied to the
manipulated, problematic data sets, and the results were compared to the results from the
previous step that had no data problems.

Next, each of the design factors was varied while the other factors were held constant
at their normative values. The following four design factors were examined: (1) an added
quadratic growth slope; (2) an added continuous covariate; (3) an increased missing
proportion of 50%; and (4) a decreased sample size of 300. For the generated data sets with
each varying factor, both the standard and the mixture multi-group procedures were used
for estimation to see whether the results were comparable. Then the data manipulation
procedures described above were applied to the generated data sets to simulate the
completely missing data condition as well as the same response data condition in one
group. Only the mixture multi-group procedure was applied to the problematic data sets.

Finally, the effect of the multiple missing data problem and the effect of both missing
and same response data problems were investigated. For the multiple missing data
modification from the generated data sets at the normative values, two cases were
considered: completely missing data in two different groups and completely missing data
at two different time points in one group. For the missing and same response modification,
two cases were also considered: two different problems in two different groups versus in
one group. The mixture multi-group procedure was applied to the manipulated data sets,
and the results were compared as before. Due to space considerations, only the
parameters related to growth factors (i.e., means and variances of growth factors) are
presented for the simulation results in Tables 1-4.

5.2. Simulation results

Relative parameter recovery at the normative condition was compared between the
results from the two approaches under generated (unproblematic) and manipulated
(problematic) data sets. Averaged point estimates across 100 replications and their
averaged standard errors (in parentheses) for growth factors are provided in Table 1.°> The
results from the mixture multi-group analysis were exactly the same as those from the
standard multi-group analysis across all estimates. This is not surprising because the model
specifications for the two models are statistically equivalent. Results from the condition of

“The expected mean of the data cell on the trajectory was used as the same response. That is, we drew an
extended linear line up to the fifth time point based on the growth trajectory with the first four time points, and
used the number on the trajectory at the fifth time point as the same response value.

> Averaged standard errors were compared to the corresponding standard deviations (or empirical standard
errors), and the overall discrepancy was minimal (i.e., less than 1% on average). The standard deviation of each
parameter estimate over the replications of a simulation study is considered as population standard error when
the number of replications is large (Muthén & Muthén, 2002).
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Table 3. Monte Carlo estimates through mixture estimation when two missing data cells are
present

Mixture estimation

Two missing

Growth cells in different  Two missing cells in

Group factor Parameter Generated groups one group

1 Intercept 5.0 5.000 (0.074) 5.000 (0.074) 5.000 (0.074)
Linear slope 0.1 0.098 (0.024) 0.098 (0.024) 0.098 (0.024)

2 Intercept 3.0 2.988 (0.131) 2.987 (0.132) 2.988 (0.132)
Linear slope 0.5 0.501 (0.043) 0.501 (0.043) 0.501 (0.043)

3 Intercept 7.0 6.990 (0.188) 6.991 (0.188) 6.990 (0.188)
Linear slope -0.1 —0.098 (0.061) —0.097 (0.066) —0.098 (0.061)

4 Intercept 6.0 5.980 (0.253) 5.986 (0.260) 5.988 (0.263)
Linear slope —0.6 —0.615 (0.083) —0.622 (0.107) —0.620 (0.112)

Note. The multi-group latent growth model was based on five indicator variables. In the ‘Generated’
column, estimates were from the data sets generated at the normative values. In the “Two missing
cells in different groups’ column, all the responses on the fifth time point in group 4 and on the
fourth time point in group 3 were completely missing (values in bold). In the ‘Two missing cells in
one group’ column, all the responses on the third and fifth time points in group 4 were completely
missing (values in bold).

Table 4. Monte Carlo estimates when both a missing data cell and a same response data cell are
present

Mixture estimation

Growth Missing and same cells Missing and same
Group factor Parameter Generated in different groups cells in one group
1 Intercept 5.0 5.000 (0.074) 5.000 (0.074) 5.000 (0.074)
Linear slope 0.1 0.098 (0.024) 0.098 (0.024) 0.098 (0.024)
2 Intercept 3.0 2.988 (0.131) 2.988 (0.132) 2.988 (0.132)
Linear slope 0.5 0.501 (0.043) 0.500 (0.043) 0.500 (0.043)
3 Intercept 7.0 6.990 (0.188) 6.991 (0.188) 6.990 (0.188)
Linear slope —0.1 —0.098 (0.061) —0.097 (0.066) —0.098 (0.061)
4 Intercept 6.0 5.980 (0.253) 5.964 (0.283) 5.975 (0.282)
Linear slope —-0.6 —0.615 (0.083) —0.600 (0.064) —0.601 (0.065)

Note. The multi-group latent growth model was based on five indicator variables. In the ‘Generated’
column, estimates were from the data sets generated at the normative values. In the ‘Missing and
same cells in different groups’ column, all the responses on the fifth time point in group 4 were
completely missing and all the responses on the fourth time point in group 3 were the same (values
in bold). In the ‘Missing and same cells in one group’ column, all the responses on the fifth time point
were the same and all the responses on the third time point were completely missing in group 4.

completely missing data at one time point in one group are shown in the ‘Missing’ column
in Table 1. The point estimates in the ‘Missing’ column were the same as the results of the
standard multi-group procedure and also the results of the mixture multi-group procedure
with the generated data sets. Standard errors of the simulations, however, were somewhat
changed for group 4; the standard errors of the mean and variance of the intercept were
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slightly inflated. Results from the same response data condition are shown in the ‘Same’
column in Table 1. Overall, point estimates and standard errors were also similar to the
results of the standard and the mixture multi-group procedures in the ‘Generated’ column
in Table 1. The point estimates and the standard errors of the intercept and linear slope in
group 4 changed a little, though the differences were small in magnitude.

Table 2 provides the Monte Carlo estimates when each design factor varied, while
holding the other factors at their normative values. The patterns of the results were very
similar to those in Table 1 across the following four different conditions: (1) when a
quadratic slope was added; (2) when a continuous covariate was added; (3) when the
missing proportion was increased to 50%; and (4) when the sample size was decreased to
300. First, the results of the mixture multi-group procedure were the same as those of the
standard multi-group procedure with generated data sets. Second, the results were still
very comparable when the missing data and same response data conditions were
manipulated. The results of groups 1, 2, and 3 were the same or nearly the same regardless
of the conditions. The results of group 4 that had the missing data or the same response
data conditions had somewhat different growth factor estimates, though the differences
were minimal.

The Monte Carlo estimates for the condition of completely missing data at two time
points in one group or two groups are provided in Table 3. Regardless of whether this
condition was limited to one group or two groups, the mean estimates of intercepts and
slopes, as well as standard errors, were very similar to the results from the generated data
sets without missing data. The standard errors in parentheses were slightly different,
though the differences were very small. The Monte Carlo estimates for the condition of
both the completely missing data and the same response data are provided in Table 4. The
results were still very comparable to the findings from the generated data sets, whether
the two kinds of data problems occurred in one group or two groups.

6. Real data analysis

In this section, the mixture multi-group approach is applied to a real data set with one of
the identified data problems as an alternative to the standard multi-group approach. We
show a case of the same response problem in this example, having briefly described an
example of the missing data problem in the previous section (White et al., 2012). We
present this analysis example to show the feasibility of the mixture multi-group procedure
under these problematic data situations and to show that we can calculate a ;> difference test
statistic for invariance tests that are typically implemented in a standard multi-group analysis
using provided log-likelihood values in the results. It should be noted that the example
provided is for demonstration purposes and thus no serious substantive conclusions should
be construed from the findings. The Mplus code is provided in the Appendix.

The data used in this analysis are from a large placebo-controlled, comparative
effectiveness smoking cessation clinical trial conducted at the University of Wisconsin
Center for Tobacco Research and Intervention (Bolt et al., 2012; Piper et al., 2009, 2011).
This study was designed to test the efficacy of five cessation pharmacotherapy treatments
(nicotine lozenge, nicotine patch, sustained-release bupropion, nicotine patch plus
nicotine lozenge, and bupropion plus nicotine lozenge) versus placebo (see Piper et al.,
2009, 2011; for more details on study methods and main results). As part of the study
assessment, intensive longitudinal data were collected via EMA. Study participants
completed four daily EMA reports (just after waking, prior to going to bed, and two
additional reports timed to occur randomly during the day) for one week prior to making a
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quit attempt and for 2 weeks after the quit day. Participants made ratings of nicotine
withdrawal symptoms, self-efficacy, motivation, cessation fatigue, smoking, alcohol use,
stress, and context (situational factors that may increase risk of smoking). The EMA
methodology is described in more detail in Bolt et al. (2012) and Piper et al. (2011).

For a growth model, we utilized seven waves of daily negative affect (NA) ratings in the
cessation clinical trial, from quit day to 1 week post-quit. The main outcome measure, NA,
was an average score of two five-point (1 to 5) Likert-type scale items: one item was ‘upset’
and the other was ‘distressed.’ Therefore, NA ranged from 1 to 5, in increments of 0.5. The
group variable of interest was marital status, assessed using six categories: married,
n = 565 (46.3%); divorced, n = 263 (21.5%); widowed, n = 34 (2.8%); separated, n = 29
(2.4%); never married, n = 222 (28.2%); and domestic partner, 7 = 108 (8.8%).
Descriptive statistics for the indicator variables and frequencies of responses are
presented in Table 5.

The objective of this multi-group analysis was to examine whether or not the six
growth trajectories corresponding to the six groups were comparable to one another.
One problem in this typical multi-group latent growth model was that all subjects in the
separated group had the same response at T7 (i.e., all 1s; see Table 5). Substantively or
conceptually, the fact that all participants had the same response is not a problem.
However, with this sameness in a data set, SEM programs, including Mplus, will not initiate
the estimation process. For example, Mplus outputs an error message: ‘One or more
variables have a variance of zero. Check your data and format statement.” Thus, we
implemented the mixture multi-group procedure with one latent class and six known
classes, which then estimated all different growth factor means and variances across the
six marital groups. The results are provided in Table 6(a), and the growth trajectories are

Table 5. Descriptive statistics of negative affect by martial groups

Time
Marital status T1 T2 T3 T4 T5 T6 T7
Married M 1.313 1.320 1.321 1.254 1.327 1.276 1.264

SD 0.620 0.675 0.686 0.554 0.700 0.622 0.615
n 534 493 479 475 451 449 453

Divorced M 1.406 1.464 1.424 1.429 1.367 1.448 1.403
SD 0.638 0.766 0.731 0.868 0.721 0.790 0.752
n 245 235 230 219 210 201 206
Widowed M 1.288 1.300 1.350 1.161 1.148 1.250 1.286
SD 0.468 0.726 0.559 0.351 0.477 0.553 0.615
n 33 30 30 31 27 28 28
Separated M 1.173 1.273 1.250 1.068 1.023 1.048 1.000
SD 0.468 0.650 0.511 0.234 0.107 0.218 0.000
n 26 22 24 22 22 21 19
Never married M 1.552 1.500 1.398 1.377 1.387 1.389 1.457
SD 0.864 0.780 0.687 0.749 0.738 0.675 0.771
n 212 185 182 175 173 166 163
Not married, M 1.500 1.355 1.340 1.272 1.356 1.283 1.328
but living with SD 0.883 0.719 0.657 0.572 0.654 0.566 0.655
domestic partner n 103 100 97 101 94 90 87

Note. M = mean; SD = standard deviation. Married, n = 565; divorced, n = 263; widowed,
n = 34; separated, n = 29; never married, n = 222; domestic partner, n = 108. The subjects in
the separated group on T7 (n = 19; bold values) gave all the same responses, which were 1s.
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Table 6. Results of mixture multi-group analysis with seven waves of negative affect real-time data

Marital status Frequency Proportion Intercept Slope Parameters Log-likelihood

(a2) Without any constraint

Married 565 46.3% 1.323 —0.008 27 —8111.019
Divorced 263 21.5% 1.446 —0.004

Widowed 34 2.8% 1.277 —0.004

Separated 29 2.4% 1.284 -0.032*

Never married 222 18.2% 1.513 —-0.017*

Domestic partner 108 8.8% 1.451 —0.026*

(b) With a constraint of the same slope estimates

Married 565 46.3% 1.331 —-0.011* 22 —8113.509
Divorced 263 21.5% 1.466 -0.011*

Widowed 34 2.8% 1.296 —0.011*

Separated 29 2.4% 1.224  —0.011*

Never married 222 18.2% 1.494 —-0.011*

Domestic partner 108 8.8% 1.404 —-0.011*

Note. *p < .05. The subjects in the separated group had the same responses at T7 and are thus
indicated in bold.

(a) Without constraint (b) With slope constraint
1.6 - 1.6
7 M - M
S 1.4+ 5 1.4
(9] {9
&= &=
© P N L ©
b=l b ¢ =
© ©
oo oo
(] ()
Z 1.2 Z 121 M
1.14 1.1
1 T T T T T T 1 1 T T T T T T !
TI T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7
Time Time
—&— Married Divorced =#—Widowed ==>¢=Separated ===Never married Domestic partner

Figure 3. Growth trajectories of negative affect across the six marital groups without and with
constraint.

shown in Figure 3(a). One of the important purposes of estimating a typical multi-group
latent growth model is to test whether some of the growth factors are invariant across
groups. Thus, we also ran the same multi-group model with the constraint of the same
slope means across the six groups using the mixture procedure.6 The results of the
restricted model are presented in Table 6(b), and the growth trajectories are shown in
Figure 3(b).

®In a substantive study, a constraint can be applied to some but not all groups, depending on the hypothesis
tested.
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A likelihood ratio test was then performed to test the invariance of the slopes (H, : The
six marital groups have the same slopes, vs. H; : At least one slope is different from the
others). Since ML estimation with robust standard errors (Muthén & Muthén, 2010) was
used in Mplus 0, scaling correction factors were adjusted to calculate the ;{2 difference
statistic (see Satorra, 2000; Satorra & Bentler, 2001). Given the simpler model’s log-
likelihood (¥ly), scaling correction factor (scfy), and number of parameters (py), and given
the more complex model’s log-likelihood (//,), scaling correction factor (scf.), and number
of parameters (), the deifference statistic is calculated as

L —2(ls — 11,
Kaitt = () " sefe — pe X scfe)/(ps —pe)’

9)

which follows the y° distribution with p. — p, degrees of freedom. In our particular
example,

. —2(~8113.509 + 8111.019)
Kaitt = (2275 2,590 — 27 x 2.267)/(22 — 27)

= 5.8879, (10)

and this statistic was compared to the y*distribution with 5 degrees of freedom (i.e., 27-
22 =5). The p-value was .3173, suggesting that growth slopes were not different across the
six groups. Likewise, when the standard multi-group procedure was not feasible because
of problematic data situations, the mixture multi-group procedure provided not only the
trajectory estimates across the groups but also the y* difference statistic for invariance
tests, just like a standard multi-group analysis without any problematic data conditions.

7. Discussion and conclusion

The purpose of the present study was to show how to circumvent an estimation problem
for a multi-group latent growth model when an indicator variable or variables had no
variance in any of the groups examined. Since a multi-group analysis in the SEM framework
initiates its estimation process with a check of complete covariance structures for all
groups, the parameters for a multi-group model are not estimable when a group has
completely missing data (or just one response) or same response data on an indicator
variable or variables. This situation can be quite common in cohort sequential longitudinal
studies (or accelerated longitudinal studies) or in a complex longitudinal model with
multiple distinct phases, because data are likely to be sparser as the time moves farther
from a baseline or an intervention point. If a target group of interest is small in size, these
data problems can occur more often than in other groups with a larger number of
observations because participants in a small, homogeneous group are more likely to have a
similar experience at a given time point. The mixture multi-group approach provided
tangible results with problematic data sets by applying a creative, straightforward
adjustment to an existing mixture modelling approach.

Theoretically and empirically, the mixture multi-group procedure can provide valid
and reliable results when used as an alternative to the standard multi-group procedure in
problematic data situations. However, without a Monte Carlo simulation study, it is hard to
know how closely those estimates from the mixture approach match the results from the
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standard multi-group LGM. When there was no data problem, the mixture multi-group
estimation procedure showed exactly the same results, in terms of means and variances of
growth factors, as the standard multi-group estimation procedure. When the generated
data sets were manipulated to simulate problematic data examples, the mixture multi-
group approach provided quite reliable results. Although the Monte Carlo study showed
very reassuring results of the mixture estimation procedure, one should also note that this
was a simulation study and the scope and thoroughness of the conditions simulated were
limited.

Having verified that the mixture multi-group procedure showed valid and reliable
results in the Monte Carlo study, we checked whether this mixture approach could be
used as an alternative to the standard multi-group approach in a real data analysis. In other
words, we demonstrated that the mixture approach could be used for the y* difference
test to check various types of measurement invariance as conducted in a standard multi-
group analysis. Through the results of the real data example, utilizing negative affect data
collected over 1 week post-quit in a real smoking cessation clinical trial, we demonstrated
that the log-likelihood values from the two models, one of which was the more restricted
model (i.e., the model with the same slopes), could be used to test the slope invariance
across the six marital groups.

The mixture estimation procedure appears to be useful in the presence of the data
problems described. Of the two data problems, however, one needs to differentiate the
completely missing data problem from the same response data problem. The fact that a
group has the same response on an indicator variable by chance is not a substantive or
design problem but an estimation problem. By comparison, completely missing data can
be a substantive problem because actual responses for an indicator variable in a group
have never been observed. If this missingness occurred by a research design as in cohort
sequential longitudinal studies, it is reasonable to assume that the missing at random
assumption is satisfied (Graham, Hofer & MacKinnon, 1996). Thus, in this mixture multi-
group analysis, it is assumed that the potential responses in a completely missing data cell
could lie on an extension of the growth trajectory based on the other valid indicators. If
data are missing not at random (e.g., non-ignorable dropouts of patients from a treatment
programme), then, needless to say, the mixture multi-group approach will not provide
valid results over unobserved data points. Although, in the simulation study, the results
showed quite good growth parameter recovery with completely missing data, one should
carefully check the growth estimates with the completely missing data problem for
interpretation.

In line with this cautionary note, researchers should proceed with caution when using
the mixture estimation approach for a factor-analytic model. A latent growth model is
fundamentally a factor-analytic model, and therefore this mixture approach can also be
used for a factor model under the same kinds of data problems. However, in a latent
growth model, one characteristic (e.g., depression) is measured on multiple occasions
across time, whereas in a factor-analytic model, multiple characteristics (e.g., depression,
craving, and negative affect) are measured only once. It may or may not be relevant to
assume that the potential responses of completely missing depression scores are
comparable realizations of the other indicators (e.g., craving and negative affect),” and
that this missing pattern is missing at random. Thus, one should be careful when using the

7'This assumption probably depends on how strongly these indicator variables are correlated with each other. If
they are highly correlated, the assumption may be acceptable.
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mixture multi-group approach with the completely missing data problem, especially in a
common factor model.

The present study introduced and demonstrated a modified estimation procedure to
circumvent some problematic data situations which hinder estimation in a multi-group
longitudinal data analysis. More specifically, the mixture multi-group procedure was
shown to reliably estimate a multi-group latent growth model with completely missing
data or the same response data on an indicator variable(s). Furthermore, the validity of
invariance tests using likelihood ratios from the mixture analysis output was demon-
strated. In the current research environment where limited resources are maximized to
produce valid inference using efficient study designs — for example, accelerated
longitudinal or cohort sequential longitudinal designs (Duncan et al., 1996) or planned
missing follow-ups (Brown, Indurkhya & Kellam, 2000) — the mixture approach
maximizes the use of the existing data to answer often critical questions in the literature.
Thus, this modified mixture approach to a multi-group analysis can have important
implications for applied research.
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Appendix |: Mplus code for real data example

Here we give the Mplus code for a growth mixture model with known classes —a smoking
cessation data example with six known classes and one true latent class (no slope
constraint across six marital groups).

Title: A mixture model with known classes-no slope constraint
Data: File is TTURC2_EDData.dat;
Format is 14f8.2;
Variable: Names are id yl-y7 gender marital educatio
wages income race;
Usevar are yl-y7 marital;
Classes = cg(6) c(1);
Knownclass is cg (marital=1 marital=2 marital=3
marital=4 marital=5 marital=6);
Missing are all(999);
Analysis: Model = nomeanstructure;
Type = mixture; estimator = mlr;
Model: %Overall%
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
scg#l.c#l%
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
scag#2.c#ls
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
scg#3.c#1%
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
scg#td.cH#ls
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
Scg#5.c#1%
i s | yl@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;
scg#to.cH#ls
i s | yl@0 y2@1 y3@2 y4@3 y5@4 yo6@5 y7@6;
Plot: Type = plot2;
Series = y1(0) y2(1) y3(2) y4(3) y5(4) y6(5) y7(6);
Output: Tech9;



