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Objective To evaluate the association of nicotinic

acetylcholine receptor (nAChR) single nucleotide

polymorphism (SNP) with 7-day point prevalence

abstinence (abstinence) in randomized clinical trials

of smoking cessation therapies in individuals grouped

by pharmacotherapy randomization to inform the

development of personalized smoking cessation therapy.

Materials and methods We quantified association of four

SNPs at three nAChRs with abstinence in eight randomized

clinical trials. Participants were 2633 outpatient treatment-

seeking, self-identified European ancestry individuals

smoking at least 10 cigarettes/day, recruited through

advertisement, prescribed pharmacotherapy, and provided

with behavioral therapy. Interventions included nicotine

replacement therapy (NRT), bupropion, varenicline, placebo

(PLA), or combined NRT and bupropion, and five modes

of group and individual behavioral therapy. Outcome

measures tested in multivariate logistic regression were

end of treatment and 6 month (6MO) abstinence, with

demographic, behavioral, and genetic covariates.

Results ‘Risk’ alleles previously associated with smoking

heaviness were significantly (P < 0.05) associated with

reduced abstinence in the PLA pharmacotherapy group

(PG) at 6MO [for rs588765, odds ratio (95% confidence

interval) 0.41 (0.17–0.99)], and at end of treatment and at

6MO [for rs1051730, 0.42 (0.19–0.93) and 0.31 (0.12–0.80)],

and with increased abstinence in the NRT PG at 6MO

[for rs588765, 2.07 (1.11–3.87) and for rs1051730, 2.54

(1.29–4.99)]. We observed significant heterogeneity

in rs1051730 effects (F = 2.48, P = 0.021) between PGs.

Conclusion chr15q25.1 nAChR SNP risk alleles for

smoking heaviness significantly increase relapse with PLA

treatment and significantly increase abstinence with NRT.

These SNP–PG associations require replication

in independent samples for validation, and testing in larger

sample sizes to evaluate whether similar effects occur in

other PGs. Pharmacogenetics and Genomics 23:94–103 �c
2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.
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Introduction
Tobacco use is the largest preventable cause of death in

the USA [1] and worldwide [2]. Most smokers wish to

stop, and both behavioral counseling and pharmacothera-

pies increase abstinence rates two-to-three fold compared

with placebo (PLA) abstinence rates in randomized

clinical trials (RCTs), though there are differences in

the effectiveness of the therapy [3]. Yet, the majority of

smokers are not able to quit long-term with either

behavioral therapy and/or pharmacotherapy. Thus, there

is a critical need to enhance the effectiveness of smoking

cessation treatments. One approach to improve cessation

rates would be to identify factors that indicate which

individuals will be benefited the most from which

treatment and to develop algorithms to incorporate these

factors into clinical practice. These factors could include

sex, nicotine dependence, comorbidity, the rate of

nicotine metabolism, pharmacogenetic variation, or com-

binations of factors [4–11].

Evidence that reveals interactions between smoker

characteristics, medications, and cessation success sug-

gests that effective algorithms to assign medication may

be possible. For example, there is evidence that the rate

of nicotine metabolism predicts which smokers will be

more successful at quitting with bupropion (BUP) [12]

and with transdermal nicotine replacement therapy

(NRT) [8,13], and that more highly dependent smokers
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benefit more from combination pharmacotherapies than

do less dependent smokers [14]. Despite such findings,

at present, no algorithm for the assignment of smoking

cessation medication has been demonstrated to be useful

in clinical practice, and none is widely used. More

research is needed on this topic. Nicotinic acetylcholine

receptor (nAChR) locus single nucleotide polymorphisms

(SNPs) have been found to be related with measures of

nicotine dependence [15–42], response to tobac-

co [43–45], and smoking cessation [23,46–52] and,

therefore, may prove useful in optimizing assignment of

smoking cessation pharmacotherapies. We choose four

nAChR SNPs among many possible nAChR SNPs with

a-priori evidence for an association with nicotine depen-

dence, with response to nicotine or with smoking

cessation. We choose these four based on substantial

and repeated a-priori evidence of association with

nicotine dependence and with abstinence (below). The

a-priori associations represented by these four nAChR

SNPs are the only association signals investigated across

the eight RCTs to date.

rs2072661, in the 30 untranslated region of CHRNB2
at chr1q21.3, has been associated with abstinence in RCT

randomizing participants to BUP or PLA; initial response

to tobacco in adolescent samples; short-term abstinence

in a crossover smoking cessation trial of NRT and PLA;

baseline Fagerström test for nicotine dependence

(FTND) score among treatment-seeking smokers; and

nausea among treatment-seeking smokers randomized to

behavioral therapies and prescribed varenicline (VAR)

[35,43,46,53,54]. Candidate gene, genome-wide associa-

tion studies, and meta-analytic studies with a nicotine

dependence phenotype have identified three different

loci represented by SNPs rs1051730, rs578776, and

rs588765 at chr15q25.1 in CHRNA5 and CHRNA3 [30].

rs1051730 and correlated SNPs have been associated with

nicotine dependence and lung cancer [18–20,22,55],

abstinence [23,50], and smoking likelihood during

pregnancy [48]. rs578776 and correlated SNPs have been

associated with nicotine dependence [18,22,27,30] and

abstinence [49]. rs588765 and correlated SNPs have been

associated with nicotine dependence [27,30] and with

abstinence [51]. Recent research using a single RCT has

demonstrated that individuals with chr15q25.1 risk

haplotypes [22,23] exhibit statistically significantly re-

duced abstinence when randomized to PLA versus no

effect on abstinence when randomized to active pharma-

cotherapy [52], encouraging further exploration of

chr15q25.1 associations with response to multiple phar-

macotherapies and cessation outcomes in treatment-

seeking smokers.

The Pharmacogenetics of Nicotine Addiction Treatment

(PNAT) consortium was formed in 2005 to identify the

role of pharmacokinetic and pharmacodynamic gene

variation on nicotine dependence and metabolism

phenotypes, with a focus on smoking cessation and

medication response, and to generate the evidence base

to optimize the use of pharmacotherapies for smoking

cessation. In this analysis, we carried out analyses of the

association of nAChR candidate gene variation with

abstinence at the end of treatment (EOT) and at 6

month (6MO) after the quit date in 2633 treatment-

seeking smokers enrolled in eight RCTs of smoking

cessation. We carried out analyses by pharmacotherapy

group (PG), including predictor SNP regression, sensi-

tivity, mediation, and receiver–operator curve analyses.

We carried out these analyses to address the following

questions: (a) are any of the four nAChR SNPs of a-priori

interest significantly associated with abstinence in

smokers grouped by pharmacotherapy, and (b) how do

the results help our understanding of the pharmacoge-

netic mechanisms that operate in smoking cessation?

This research uses the largest combined sample and

the most comprehensive group of smoking cessation

pharmacotherapies to be submitted to pharmacogenetic

analyses. In our analyses, we have adjusted for trial

randomization arm, participant demographics, nicotine

dependence measures, and genetic covariates. This

study refines previous pharmacogenetic smoking cessa-

tion associations at four nAChR SNPs of current interest,

identifies novel associations of two nAChR loci on

smoking cessation outcomes in individuals randomized

to NRT, and identifies at least two mechanisms by

which a nAChR SNP may influence abstinence. The

significant SNP–PG association results require testing in

independent RCT arms to validate the specific PG

associated effects. Additional testing in larger numbers

of RCTs arms, and using multiple treatment meta-

analysis techniques, may establish whether there are

specific SNP associations with PGs not identified in this

analysis.

Materials and methods
Participants

Informed written consent was obtained by the investiga-

tors of each RCT, and approval was obtained from the

appropriate institutional review boards [56–62].

Data sources, study selection, and phenotype data

extraction

We utilized data from eight RCTs with participant clinical

outcome and genetic data [56–62] [Table 1 and Supple-

mental digital contents 1–4 (http://links.lww.com/FPC/
A554): RCT design characteristics; behavioral and demo-

graphic variables selected for analysis; inclusion and

exclusion criteria for eight RCTs; pharmacotherapy and

behavioral therapy to EOT and 6MO of eight RCTs by

randomization arm]. The individuals included in the

analysis represented 44% of individuals randomized to

treatment in the eight RCTs, and 81% of individuals for

whom we had received RCT data and biospecimens
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or DNA samples. Reasons for exclusion include: (a) a

biospecimen was not collected [1595 (27.0%)]; (b) did

not self-identify as White [1168 (19.7%)]; (c) were

randomized to pharmacotherapy arms not selected for

this analysis [490 (8.3%)]; (d) did not enter treatment

after randomization [188 (3.2%)]; (e) DNA sample

genotype completion rate was below a predetermined

threshold [70 (1.2%)]; and/or (f) chromosomal sex did

not match clinical sex [22 (0.4%)].

Genotyping and genotype data extraction

Genomic DNA was extracted from saliva [63], whole

blood, or buffy coat, quantified and normalized to

50 ng/ml, and genotyped at the University of Southern

California Epigenome Center and at the University of

California San Francisco Institute for Human Genetics

Genomics Core Facility. We extracted SNP genotype data

from custom 1536 SNP Illumina GoldenGate panels

(Illumina, San Diego, California, USA) interrogating

candidate genes of interest to PNAT [46,64] and

imputed genotype data where necessary. All genotyping

included HapMap and replicated DNA samples.

We reviewed and filtered GoldenGate genotyping data

as described [46] for RCTs 3A and 3B and in a similar

manner for the remaining RCTs by manual review of

genotype cluster metrics, review of HapMap sample

concordance, by successively filtering samples and SNPs

with call rates below a defined threshold, and comparison

of X chromosome heterozygosity and clinical sex. We

estimated principal components of population genetic

variation [65] among self-identified White participants

using 45 ancestry informative markers genotyped across

all individuals. Genotypes were imputed with IMPUTE

v2.1.2 [66] using 1000 Genomes CEU (Utah residents

with ancestry from northern and western Europe) August

2010 haplotype data at CHRNB2 and chr15q25.1 [chr1:

154476304–154616304 and chr15: 78747906–79045112

(NCBI build 37)]. Imputed dosage was converted to

genotypes with a 0.90 dosage probability cutoff using

GTOOL v0.6.5. (http://www.well.ox.ac.uk/̃cfreeman/software/
gwas/gtool.html). rs2072661 and rs1051730 genotype data

were extracted from GoldenGate genotyping data, and

rs588765 genotype data were imputed for all RCTs.

rs578776 genotype data were extracted from GoldenGate

genotyping data for RCTs 3A and 3B, and imputed for the

remaining RCTs. Among the expected 10 532 genotypes

from four SNPs at 2633 individuals tested for association,

the overall missing genotype rate was 1.3%, where 57.0%

and 41.6% were extracted from GoldenGate genotyping

data or imputed, respectively. A total of 97.7% of rs588765

and 98.8% of rs578776 imputed genotype dosage prob-

abilities were within 10% of modal values. nAChR SNP

minor allele frequencies did not differ significantly across

the 26 arms. We evaluated rs2072661 and rs1051730

genotype distributions by randomization arm and observed

two arm-by-SNP strata with Hardy–Weinberg equilibrium

P-values of less than 0.05 versus 2.5 expected by chance

[see table, Supplemental digital content 5 (http://links.lww.
com/FPC/A555): nAChR SNPs counts and Hardy–Weinberg

equilibrium P-value, by arm].

Logistic modeling of the effect of SNPs on EOT

and 6MO abstinence

Multiple imputation by chained equations [67] was used

to impute missing values 20 times for age (two

individuals), education (10), marital status (seven),

cigarettes per day (CPD) (seven), and FTND [68] score

(42). Regression analyses were carried out on each

imputed data set and the results were combined with

adjustment to the variance of regression parameters to

reflect the additional variance attributable to the

imputations [69]. Regression analyses were run for all

SNPs using an additive model (and for rs2072661, with

the dominant model [35,46,53,54]), and with adjustment

for the other chr15q25.1 SNPs [30], when appropriate.

Regression analysis was carried out with data from all 26

arms (except for rs2072661, where we excluded the two

arms from the RCT that discovered the SNP association)

Table 1 RCT participant characteristics, pharmacotherapy, EOT, and 6MO abstinence

RCT 3A 3B 5 6A 6B 9A 9B 9C

Investigator Lerman Lerman Swan Hall Hall Baker Baker Baker
Na 378 416 487 150 174 173 171 684
Age (years) [mean (SD)] 46.7 (11.4) 44.4 (11.5) 49.1 (11.5) 41.8 (9.6) 57.3 (5.9) 37.7 (11.2) 41.3 (10.8) 44.4 (11.8)
BMI [mean (SD)] 27.5 (5.5) 26.5 (4.7) 27.8 (5.8) 26.5 (4.7) 26.5 (5.9) 26.6 (5.7) 26.7 (5.5) 28.8 (6.7)
College (%) 51.9 46.1 25.5 51.7 58.6 19.7 18.2 22.8
Female (%) 46.8 54.6 68.8 38.0 41.4 53.8 58.5 60.0
Married (%) 49.2 47.3 69.0 24.7 28.7 44.8 48.0 47.2
FTND [mean (SD)] 5.55 (2.2) 5.17 (2.1) 5.15 (2.1) 4.82 (2.1) 4.87 (2.1) 5.13 (2.4) 5.76 (2.1) 5.21 (2.2)
CPD [mean (SD)] 23.7 (9.2) 21.8 (9.4) 20.2 (8.3) 19.1 (7.4) 20.8 (8.8) 21.5 (8.3) 24.1 (9.7) 21.5 (8.8)
Pharmacotherapyb NRT BUP, PLA VAR NRT + BUP NRT + BUP BUP, PLA BUP, PLA NRT, BUP, PLA
Randomization arms 2 2 3 5 4 4 2 4
EOT ABS 0.325 0.272 0.554 0.642 0.672 0.272 0.216 0.418
6MO ABS 0.198 0.219 0.431 0.460 0.626 0.145 0.205 0.317

BUP, bupropion; CPD, cigarettes per day; EOT ABS, end of treatment abstinence; FTND, Fagerström test for nicotine dependence; 6MO ABS, 6 month abstinence;
NRT, nicotine replacement therapy; NRT + BUP, combined NRT and BUP; PLA, placebo; RCT, randomized clinical trials; VAR, varenicline.
aN of self-identified White participants with DNA.
bNRT, BUP, PLA, VAR, NRT + BUP.
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and included variables for the SNPs, demographics [age

(age and age2), education (presence or absence of college

degree), sex, marital status (married or other)], depen-

dence measures [FTND and CPD (coded as in the

FTND)], interactions with demographic variables (CPD

� age, CPD� sex, and FTND� sex), the first 10

principal components of population genetic variation,

and indicator variables for the 26 RCT arms and the PGs.

These analyses were carried out as regression analyses

including all 2633 individuals simultaneously, thus the

number of variables is a small fraction (B2%) of the

number of individuals. Regression analyses assessed

the homogeneity of SNP effects between PGs, and

quantified effects of SNP across all PGs.

Post-hoc analyses performed and general

considerations

Regression analysis of chr15q25.1 SNPs evaluated SNP

effects excluding dependence covariates. Multiple med-

iation analyses tested whether nicotine dependence

measures mediated the association of rs1051730

with 6MO abstinence, controlling for other chr15q25.1

SNPs, demographics, population genetic variation, and

relevant RCT arms [70]. Receiver-operating character-

istic (ROC) analyses of abstinence compared the

contribution of nicotine dependence and genetic vari-

ables with a base model with demographic variables.

Statistical analyses were carried out using STATA 12.0

(StataCorp, College Station, Texas, USA). Power analyses

were carried out using Quanto [71]. a-value for all tests

was 0.05.

Results and discussion
Variation between RCTs

The eight RCTs exhibit similar design features and

ascertainment criteria, but differ in prevalence of baseline

variables and EOT and 6MO abstinence (Table 1 and see

tables, Supplemental digital contents 1–4, http://links.lww.
com/FPC/A554). RCT 5 was conducted in a healthcare

setting [57], and the other RCTs were conducted at

Universities. All RCTs were conducted in the USA

metropolitan regions. Two RCTs were designed as

pharmacogenetic efficacy trials [56], one as a comparative

effectiveness trial [57], and the remaining as comparative

treatment efficacy trials [58–62]. All RCTs required at

least 10 CPD and age more than 18 years, although one

RCT was focused on older smokers [59]. All RCTs had

similar exclusion criteria that included reproductive/

lactation criteria for women, severe current cardiovascu-

lar, neurological, or psychiatric disorders, medical contra-

indications for pharmacotherapy treatment, and current

use of psychiatric drugs. All RCTs provided multiple

sessions of group or individual counseling, where one

RCT randomized participants to web-based counseling,

proactive telephone-based counseling, or both modal-

ities [57]. Therapy randomization from baseline to EOT

was to five different pharmacotherapies [NRT, BUP, PLA,

VAR, or combined NRT and BUP (NRT + BUP)], which

could be combined with different behavioral therapies

[group counseling (five or seven sessions), individual

counseling (six, seven, or eight sessions), and web-based

counseling, proactive telephone-based counseling, or

both]. Combined PG sizes at EOT were 748, 595, 479,

487, and 324, respectively. Most RCT arms received no

further therapy from EOT to 6MO; individuals in the two

arms that received NRT + BUP from baseline to EOT

were randomized to several pharmacologic and behavioral

treatments from EOT to 6MO (see table, Supplemental

digital content 4, http://links.lww.com/FPC/A562), resulting

in a total of seven different PGs at 6MO, the five original

PGs, chronic NRT and BUP (cNRT + BUP), and chronic

BUP and NRT (cBUP + NRT). Combined PG sizes at

6MO were the same for the first four PGs and 161, 98,

and 65, respectively, for the three NRT + BUP PGs.

Seven RCTs performed biochemical verification of

abstinence [56–62]. All RCTs evaluated 7-day point

prevalence abstinence at EOT (8–12 weeks postquit),

and at 6MO.

Association of nAChR SNPs with abstinence

by pharmacotherapy randomization

rs2072661 is not significantly associated with reduced

abstinence in any PG with either transmission model [see

table, Supplemental digital content 6 (http://links.lww.com/
FPC/A562): effects of rs2072661 on EOT and 6MO

abstinence, 24 arms]. There are two PG groups

that exhibit P-values of less than 0.10, however, these

differ in transmission model, abstinence time point,

and PG.

rs588765 and rs1051730 are significantly associated with

abstinence [Fig. 1 and see table, Supplemental digital

content 7 (http://links.lww.com/FPC/A557): effects of

chr15q25.1 nAChR SNPs on abstinence, 26 arms]. The

minor allele of rs588765 is significantly associated with

reduced abstinence in the PLA PG at 6MO [odds

ratio = 0.414 (95% confidence interval) (0.171–0.999)

P = 0.049], and with increased abstinence in the NRT

PG at 6MO [2.074 (1.111–3.871) 0.022]. The minor

allele of rs1051730 is significantly associated with

reduced abstinence in the PLA PG at EOT [0.422

(0.191–0.934) 0.033] and at 6MO [0.312 (0.122–0.802)

0.016], and with increased abstinence in the NRT PG at

6MO [2.540 (1.293–4.987) 0.007]. The effect of

rs1051730 on abstinence differs significantly between

PGs at 6MO (F6,28 652 = 2.48; P = 0.021). The degrees of

freedom of the F statistic reflect imputation of multiple

datasets. The significant test of homogeneity is likely due

to the significant and opposite effects of rs1051730 on

abstinence in individuals randomized to PLA versus NRT.

In sensitivity analyses not adjusting for nicotine depen-

dence measures [see table, Supplemental digital content

8 (http://links.lww.com/FPC/A558): effects of chr15q25.1

nAChR SNPs on abstinence, excluding dependence
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measures, 26 arms], rs1051730 associations with absti-

nence remain statistically significant with modestly

reduced effect sizes.

Mediation analysis

We carried out post-hoc multivariate mediation analyses to

evaluate the association of rs1051730 with nicotine depen-

dence measures, nicotine dependence measure associations

with 6MO abstinence, and rs1051730 direct effects on 6MO

abstinence in the PLA and in the NRT PGs. We restricted

these analyses to rs1051730 because of the significant effect

sizes observed with this locus on 6MO abstinence with and

without adjustment for multiple nicotine dependence

measures. We observe a significant mediational path through

the FTND score in the association of rs1051730 with 6MO

abstinence in the NRT PG, but not in the PLA PG, perhaps

because of sample size limitations [Fig. 2 and see table,

Supplemental digital content 9 (http://links.lww.com/FPC/
A559): mediation of rs1051730 association with 6MO

abstinence by nicotine dependence measures in individuals

randomized to NRT and PLA]. The direct effect of

rs1051730 on abstinence with both FTND and CPD

included in the mediation model is significant [2.73

(1.34–5.53) 0.005], and the pseudo-r2 is 0.083. rs1051730

is significantly and positively associated with CPD and

with FTND score (P < 0.001 and P = 0.016, respectively).

FTND score is significantly negatively associated with 6MO

abstinence [0.71 (0.57–0.89) 0.003], whereas CPD is

nonsignificantly negatively associated with 6MO abstinence.

The effect of rs1051730 on 6MO abstinence excluding both

nicotine dependence measures from the model is 2.23

(1.12–4.44) 0.022, with pseudo-r2 of 0.058. Thus, rs1051730

has a stronger relation with 6MO abstinence when the

dependence measures are included in the model than when

they are not, that is, the dependence measures are acting as

suppressors in this mediation model [72].

Fig. 1
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ROC analysis

We performed post-hoc ROC analyses to evaluate the

contributions of demographic, dependence, and genetic

variables to predict abstinence at 6MO. We evaluated ROC

models for the association of rs1051730 with abstinence in

the PLA PG at 6MO (NB467), in the NRT PG at 6MO

(B740), and in all PGs at 6MO (sample sizeB2592) [Fig. 3

and see table, Supplemental digital content 10 (http://
links.lww.com/FPC/A560): area under the curve (AUC) mean

and 95% CI estimates from PLA, NRT, and all PG models].

The ROC AUC values increase when pharmacotherapy is

added, for example, with the addition of NRT or all PGs,

compared with PLA, and, within each set of ROC models,

the ROC AUC increases when including additional vari-

ables in the model. For the PLA models, the AUC of the

full model is significantly greater than PLA models with

demographic variables or demographic variables and

rs1051730. For NRT or all PG models, the inclusion of

dependence variables, dependence variables and rs1051730,

or dependence variables, rs1051730, and covariate SNPs

(rs588765 and rs578776), results in ROC curves with

significantly greater AUC than the models with only

demographic variables, or with demographic variables and

rs1051730. This suggests that with or without pharma-

cotherapy, information imparted by dependence measures

and covariate SNPs increases the ability to predict

abstinence outcomes. For example, for a specificity of 0.50,

the sensitivity of the full model in the PLA, NRT, and all

PGs setting is 0.73, 0.72, and 0.81 versus 0.68, 0.70, and

0.76 for the model with only demographic variables,

respectively.

Chr15q25.1 SNPs

Two chr15q25.1 SNPs (rs588765 and rs1051730) exhibit

statistically significant associations with quitting success

in individuals randomized to PLA and NRT, but not in

individuals randomized to other pharmacotherapies.

These results were obtained by analysis of a total of

2633 self-identified White participants from eight RCTs

containing 26 therapy randomization arms, adjusted for

PG, RCT arm, demographics, dependence measures, and

population genetic variation (and chr15q25.1 SNPs,

where appropriate). rs578776, another chr15q25.1 SNP,

is not statistically significantly associated with abstinence

at either time point or in any PG. This may be because of

its more modest effect size or its inverse association with

smoking heaviness [30]. rs588765 associations with

abstinence appear to be somewhat smaller in magnitude

than those observed with rs1051730, concordant with

previously observed effects on smoking heaviness [30].

Focusing on the results of analysis of rs1051730, we

observed that the minor allele is associated with reduced

abstinence in the PLA PG at EOT and at 6MO, and

with increased abstinence in the NRT PG at 6MO.

Fig. 3

Receiver-operating characteristic (ROC) curves for (a) placebo (PLA), (b) nicotine replacement therapy (NRT), and (c) all pharmacotherapy groups
(all PG) models at 6MOs. ROC curves are shown for models including demographic variables (demos), demographic variables and rs1051730
(demos_SNP), demographic and dependence variables (demos_dep), demographics and dependence variables and rs1051730
(demos_dep_SNP), and all variables with other chr15q25.1 SNPs, rs588765 and rs578776 (demos_dep_SNP_covSNPs). SNP, single nucleotide
polymorphism.
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The directionality of the effect on abstinence in

individuals prescribed PLA is expected, as previously

shown for one trial included in this analysis [52], however,

the directionality with the NRT PG is unexpected, given

the prior associations of rs1051730 with nicotine depen-

dence [23], with reduced abstinence at 4 weeks in

multiple RCTs that randomize participants to NRT [50],

and considering the inverse associations of nicotine

dependence and abstinence [5,6]. We adjusted for the

nicotine dependence measures CPD and FTND in our

models because we previously observed significant

inverse associations of these measures with abstinence

in the eight RCTs (data not shown), concordant with a

published meta-analysis [6]. Association analyses of

chr15q25.1 SNPs and abstinence relations that exclude

nicotine dependence measures modestly reduced

rs1051730 SNP effects, suggesting that the influences

of rs1051730 and nicotine dependence on abstinence are

related. Mediation analysis examined the relations of

rs1051730 with abstinence in the PLA and NRT PGs

at 6MO, and the extent to which this relation was

mediated by nicotine dependence measures; we observed

significant mediation effects only in the NRT PG at

6MO. The mediation analysis suggests that rs1051730

significantly increases measures of nicotine depen-

dence [18,19,25], that nicotine dependence significantly

decreases abstinence likelihood [6], and that there is a

mechanism other than nicotine dependence through

which rs1051730, in the presence of NRT and at 6MO,

increases abstinence.

Mechanisms

Mechanisms that underlie the two distinct association

results involving rs1051730 can be postulated on the basis

of recent studies in neurogenetics, neuroscience, and

pharmacology. a5 knockout mice self-administer nicotine

more vigorously than wild-type mice [73], show reduced

seizure and hyperlocomotive sensitivity to nicotine [74],

and exhibit conditioned place preference for nicotine at

doses that are aversive in wild-type mice [75]. These

properties are thought to result from the a5 subunit

regulation of the medial habenulointerpeduncular nuclear

tract [73]. Functional MRI in healthy human smokers has

characterized functional connectivity (circuits) [76], in-

cluding a dorsal anterior cingulate cortex to ventral

striatal circuit inversely associated with FTND, and

multiple distinct intracingulate cortex and cingulate

cortex to frontal region circuits strengthened by nicotine

patch administration. In additional studies in smokers

and nonsmokers, and in individuals who do and who do

not meet criteria for axis I disorders [26], rs16969968

(highly correlated with rs1051730 in European ancestry

populations, and coding for CHRNA5 p.Asp398Asn,

where Asn398 is associated with reduced nAChR func-

tion [77]) was observed to be associated with functional

connectivity within the same FTND-associated cingulate

circuit. In population samples, rs1051730 has been

associated with reduced working memory perfor-

mance [78]. In a laboratory study of abstinent smokers,

transdermal nicotine has been associated with improve-

ments in working memory [79]. Finally, reduced working

memory performance in abstinent smokers has been

associated with relapse over 7 days in individuals

receiving PLA and exposed to a smoking lapse [80].

These findings suggest a hypothesis that can be tested in

treatment-seeking smokers. Smokers with reduced a5

subunit function and associated increased nicotine

dependence might be expected to have more difficulty

quitting. The observation in this analysis that smokers

with reduced a5 subunit function treated with NRT have

increased overall abstinence rates, and the increased

direct effect of rs1051730 on abstinence in mediation

analysis, reflect a mechanism that is distinct from the

effects of rs1051730 on nicotine dependence, and of

nicotine dependence upon abstinence. Prescribed NRT

may improve cognitive performance that assists abstinent

smokers to maintain normal brain functioning after

quitting smoking, and this effect may be stronger

for individuals carrying the risk allele of rs1051730.

Retrospective analyses of RCT arms randomizing indivi-

duals to PLA or NRT, and/or a prospective genotype

and NRT-stratified trial, with the appropriate genetic,

behavioral, and cognitive function data, could test this

hypothesis.

Conti et al. [46] identified the association of rs2072661

with abstinence in analyses of a double-blind randomized

controlled trial of PLA or active BUP, for example, a SNP

of 0.40 (0.25–0.67) at EOT and 0.31 (0.18–0.55) at 6MO.

The associations of this SNP with a variety of smoking

related phenotypes [35,43,54], including short-term

cessation in a crossover trial of NRT and PLA patch [53],

suggested that rs2072661 might exhibit effects on

abstinence with other PGs and that we might more

accurately quantify its association in larger samples.

However, we did not observe statistically significant

association of rs2072661 with any PG when analyzing 24

arms of seven RCTs, that is, excluding the two arms of

the RCT in which the abstinence association was

discovered [46]. If the main effect size of rs2072661 on

abstinence in RCT participants is weaker than the effect

observed by Conti and colleagues, which is expected [81],

analysis of additional RCT arms will be necessary to

validate the original [46] or subsequent associations [53],

or discover novel associations.

Limitations

Limitations of our analyses include sample size limita-

tions on statistical power, RCT participant heterogeneity,

and assumptions about variable effects required by our

pooled regression analyses. Sample size limitations on

statistical power (see table, Supplemental digital content

11, http://links.lww.com/FPC/A561: odds ratio detectable
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with 80% power) may underlie our inability to make

statements about chr15q25.1 nAChR SNP pharmacoge-

netic effects in individuals randomized to BUP, VAR, or

combined therapies. Increasing PG sample sizes in future

analyses will increase power to detect pharmacogenetic

effects, but will still require integrated data analysis

choices to be made. Although there are differences

in baseline, treatment, and outcome variables among

the RCTs, ascertainment characteristics of the RCTs are

similar and there are no significant differences in nAChR

SNP allele or genotype frequencies among the RCTs. In

the analyses reported here, we utilize one approach to

performing integrated data analysis, namely, pooled

regression analysis. Heuristically, all of the studies

contributed to the estimation of the regression coeffi-

cients for each demographic and dependence variable,

which were assumed to have the same value across arms;

each individual arm contributed to estimation of an arm-

specific level variable, allowing for different abstinence

rates across arms, and each individual arm contributed to

estimation of a pharmacotherapy-specific coefficient for

the SNP variable, and, if present, pharmacotherapy-

specific coefficients for covariate SNPs. This approach

was implemented because many of the arms had

insufficient observations for reliable estimation of SNP

effects if all of the covariates had been included and

regressions were performed separately by arm.

Summary

Treatment-seeking smokers with the minor alleles of

chr15q25.1 SNPs rs588765 or rs1051730, versus those

without these alleles, are less likely to achieve 6MO

abstinence if prescribed PLA, and more likely to achieve

6MO abstinence if prescribed NRT. However, identifica-

tion and characterization of biomarkers that support the

personalization of smoking cessation therapy will be

challenging. For example, differences in prediction of

abstinence between ROC models with and without

rs1051730 (Fig. 2) were a fraction (average of 10%) of

the AUC change observed when nicotine dependence

measures are added to the ROC models. The modest

improvement in prediction attributable to genetic vari-

ables versus the larger impact of dependence measures on

abstinence likelihood suggests that risk models will

include multiple nongenetic and genetic variables [10].

The analysis of multiple RCTs in an integrated data

analysis framework to validate the novel association of

rs1051730 with abstinence in individuals randomized to

NRT, and to discover, and then to validate, additional

novel biomarker associations with abstinence, will be

necessary to develop algorithms for smoking cessation

treatment assignment, that is, personalized medi-

cine [82]. The goal of developing predictive models of

treatment response to be implemented into clinical

practice will require collaborative efforts from each of

the domains of research, policy, industry, and healthcare.
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